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Abstract

Polynomials are a powerful tool to approximate functions. If the function of interest
does not resemble a polynomial, rational function based methods might be more
appropriate.

The theory of polynomials is well established in the field of classical analysis. Sequences
of polynomials with orthogonality properties are preferred for computations in finite
precision. Many effective numerical methods for polynomials originate from numerical
linear algebra. A connection between orthogonal polynomials and Krylov subspaces
allows to translate theory from classical analysis to numerical linear algebra and to
apply numerical procedures from numerical linear algebra to problems in classical
analysis.

For rational functions similar connections to rational Krylov subspaces remain
unexploited. Here we develop the necessary theory to identify these connections,
relate rational functions to structured matrices and develop numerical procedures
based on structured matrices for problems involving rational functions.

Rational Krylov subspaces are chosen as the starting point of our exposition. All
structured matrix pencils that construct orthogonal and biorthogonal bases for these
spaces are derived. In particular, a tridiagonal matrix pencil is shown to suffice for
the construction of biorthogonal bases. This allows us to design an efficient Lanczos
like iteration for rational Krylov subspaces.

Generating orthogonal and biorthogonal vectors is related to the factorization of the
associated Gram matrix. The displacement structure of Gram matrices related to
rational Krylov spaces is studied and the ones exhibiting low displacement rank are
classified.

The (bi)orthogonal basis vectors for rational Krylov subspaces can be related to
rational functions (bi)orthogonal with respect to a discrete (linear functional) inner
product. The specific form of these discrete inner products and linear functionals is
derived, these are weighted sums of function evaluations. For these specific (linear
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functionals) inner products, (bi)orthogonal rational functions can be directly related
to rational Krylov subspaces and the corresponding structured pencils.

These connections are used to propose numerical procedures based on Krylov subspaces
and structured matrices for problems involving rational functions. In particular, the
computation of a sequence of (bi)orthogonal rational functions is reformulated as an
inverse eigenvalue problem. The latter problem is a problem in linear algebra and
techniques from numerical linear algebra can be applied to solve this problem.



Beknopte samenvatting

Veeltermbenadering werkt goed voor het benaderen van functies. Als de functie,
waarin we geïnteresseerd zijn, niet lijkt op een veelterm, dan zijn methodes gebaseerd
op rationale functies mogelijks beter geschikt.

Klassieke analyse bevat een uitgebreide theorie over veeltermen. Rijen van veeltermen
met orthogonaliteitseigenschappen genieten de voorkeur om berekeningen uit te voeren
in eindige precisie. Veel effectieve numerieke methoden voor veeltermen zijn onstaan uit
onderzoek in numerieke lineaire algebra. Een verband tussen orthogonale veeltermen
en Krylov deelruimten laat toe om de theorie van klassieke analyse te vertalen naar
numerieke lineaire algebra en om numerieke procedures van numerieke lineaire algebra
toe te passen op problemen uit klassieke analyse.

Voor rationale functies zijn gelijkaardige verbanden met rationale Krylov deelruimten
nog niet uitgebuit. In deze tekst ontwikkelen we de nodige theorie om deze verbanden
bloot te leggen, brengen we rationale functies in verband met gestructureerde matrices
en ontwikkelen we numerieke procedures gebaseerd op gestructureerde matrices om
problemen geformuleerd met rationale functies op te lossen.

Rationale Krylov deelruimtes zijn gekozen als startpunt voor deze tekst. Alle
gestructureerde matrix pencils die orthogonale en biorthogonale basissen genereren
voor deze deelruimtes worden afgeleid. We bewijzen dat een tridiagonaal matrix
pencil volstaat om biorthogonale basissen op te stellen. Dit laat toe om een efficiënte
veralgemening van de Lanczos iteratie te ontwikkelen voor rationale Krylov deelruimtes.

Het opstellen van orthogonale en biorthogonale vectoren is nauw verwant aan
het factoriseren van de geassocieerde Gram matrix. De structuur van zulke
matrices, gerelateerd aan rationale Krylov deelruimtes, onder goed gekozen
verplaatsingsoperatoren wordt bestudeerd. De matrices die hieronder een lage rang
hebben worden geclassificeerd.

De (bi)orthogonale basisvectoren voor rationale Krylov deelruimtes kunnen in verband
gebracht worden met rationale functies die (bi)orthogonaal zijn ten opzichte van
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een discreet (lineaire functionaal) inwendig product. We bepalen ook de specifieke
vorm van deze discrete inwendige producten en lineaire functionalen. Voor deze
specifieke (lineaire functionalen) inwendige producten kunnen we een direct verband
tussen (bi)orthogonale rationale functies en rationale Krylov deelruimtes en bijhorende
gestructureerde pencils leggen.

Uitgaande van deze verbanden stellen we numerieke procedures voor, gebaseerd op
Krylov deelruimten en gestructureerde matrices, om problemen geformuleerd voor
rationale functies op te lossen. In het bijzonder herformuleren we het berekenen van
een rij (bi)orthogonale rationale functies als een invers eigenwaardeprobleem. Een
invers eigenwaardeprobleem is een probleem uit lineaire algebra en technieken uit
numerieke lineaire algebra kunnen toegepast worden om dit probleem op te lossen.
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Chapter 1

Introduction

Identifying connections between different topics in mathematics allows us to translate
theoretical results and numerical procedures from one topic to another topic. The
topics in this text are generalizations of Krylov subspaces from numerical linear algebra
and orthogonal polynomials from classical analysis. The interplay between numerical
linear algebra and classical analysis is fruitful in both directions.
Many numerical procedures in mathematics make use of the theory and methods
developed in numerical linear algebra. With the advent of computers capable of
storing program instructions, stored-program computers, in the late 1940s, interest in
error analysis describing the cumulative effects of rounding errors in finite precision
arithmetic increased significantly. Matrix theory has proven to be a natural tool
to study the effects of error propagation. Research in this area has led to the
development of effective numerical procedures for problems in linear algebra and
in other fields of mathematics [184]. For example solving least squares problems,
constructing sequences of orthogonal polynomials and computing the nodes and
weights of quadrature rules [89].
Classical analysis is an older discipline, the study of orthogonal polynomials arose
from continued fractions in the late 19th century [4]. A vast theory on orthogonal
polynomials is available, some standard introductions to this topic are [43,110,154,157].
This theory can be applied or translated to other disciplines in mathematics, such as
numerical analysis, approximation theory and numerical linear algebra. Examples are
the computation of nodes and weights for Gauss quadrature rules, error estimates for
linear algebraic systems and convergence theory for Krylov subspace methods.
The specific topics handled in this text are described for the classical case in Section
1.1. In Section 1.2 two generalizations that will be studied are described and justified.
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2 INTRODUCTION

1.1 The interplay - classical case

The now classical connections between the Lanczos iteration for Krylov subspaces and
polynomials orthogonal with respect to an inner product are sketched. For a more
complete discussion we refer to the literature [28,82,89,124].
A Krylov subspace for a matrix A ∈ Cm×m and vector v ∈ Cm is

Kk(A, v) = span{v,Av, . . . , Ak−1v}.

For a Hermitian matrix AH = A, the Hermitian Lanczos iteration computes an
orthogonal basis for this space via a three term recurrence relation. This three term
recurrence relation also generates a sequence of orthogonal polynomials with respect
to a discrete inner product. The recurrence coefficients can be grouped into a Jacobi
matrix (a Hermitian tridiagonal matrix), which represents the projection of A onto the
Krylov subspace. Roots of orthogonal polynomials correspond to the eigenvalues of the
associated Jacobi matrix. This Jacobi matrix matches the first 2k − 1 moments of A,
these moments are vHAiv, i = 0, 1, . . . , 2k − 2. Moments also play a key role in Padé
approximation, approximating the power series of a function of interest up to its first
2k − 1 terms, and in the theory of quadrature. A Gauss quadrature rule with k nodes
matches 2k − 1 moments of the integrand of interest according to a given measure.
The k nodes of a Gauss quadrature rule correspond to the roots of a polynomial of
degree k orthogonal with respect to an inner product based on this measure. And thus
the nodes of a Gauss quadrature rule with respect to certain discrete inner products
correspond to the eigenvalues of a Jacobi matrix generated by the Hermitian Lanczos
iteration applied to Krylov subspaces generated by a specific matrix A and vector v.
Which brings us back at Krylov subspaces.
Some specific examples of the above connections are:

• The Golub-Welsch algorithm to compute Gauss quadrature nodes and weights
by solving an eigenvalue problem for a Jacobi matrix [91].

• The construction of orthogonal polynomials, given an inner product, by
computing the related Jacobi matrix with techniques from numerical linear
algebra [92].

• Convergence results for Krylov subspace methods by applying potential theory
developed for orthogonal polynomials [14,100,119,120].

• Computing a Padé approximation by applying the Lanczos iteration [93].
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1.2 The interplay - Generalizations

This text generalizes these connections in two ways. The first is a generalization from
an inner product to a linear functional (indefinite inner product). Orthogonality with
respect to a linear functional will, in this thesis, be interpreted as biorthogonality.
The numerical linear algebra techniques for polynomials orthogonal with respect to an
inner product make use of unitary transformations to manipulate the related matrix.
Unitary transformations of a matrix do not cause a large growth in the Euclidean or
Frobenius norm going from the original to the transformed matrix in finite precision.
The crucial factor for numerical stability of a numerical procedure manipulating a
matrix is the control of growth in the size of the entries of this matrix [184]. Hence,
unitary transformations are inherently stable.
For linear functionals it is, in general, no longer possible to use unitary transformations.
The transformations that will be used are not inherently stable, which makes
the development of numerically stable procedures more difficult. However, such
biorthogonal procedures lead to more efficient algorithms and in some applications
a linear functional must be used. Justification of the development of methods using
nonunitary transformations are provided below for several different topics.
The second is a generalization from polynomials to rational functions with prescribed
poles. Polynomials are a powerful tool to approximate functions. However, if the
function to be approximated is not ’polynomial-like’, the approximation might converge
slowly. For example, if we want to approximate an integral of a function that has a
singularity just outside the region of interest. In this case, a rational function with
poles close to this singularity is a more natural candidate for approximation than a
polynomial [54].

1.2.1 Krylov subspace methods

In Krylov subspace methods, the interest in biorthogonal procedures arises from their
potential gain in efficiency. An orthogonal basis for a Krylov subspace Kk(A, v), with
AH 6= A, satisfies a recurrence relation governed by a Hessenberg matrix. This implies
that the computation of basis vectors requires orthogonalization with respect to all
previously generated basis vectors. If A is very large, then keeping all basis vectors in
memory might become prohibitively expensive. Usually one is interested in the matrix
containing the recurrence coefficients and not in the basis vectors. A more efficient
procedure is obtained if a pair of biorthogonal bases for specific Krylov subspaces is
computed. One basis for Kk(A, v) and another, with AH the Hermitian conjugate of
A and some vector w, for

Kk(AH , w) = span{w,AHw, . . . , (AH)k−1w}.
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Such a pair of biorthogonal bases can be constructed via a three term recurrence
relation. This leads to a tridiagonal matrix and requires only 3 basis vectors to be kept
in memory. The tridiagonal matrix represents the oblique projection onto Kk(A, v).
Hence, using biorthogonal bases leads to a more efficient procedure, but developing a
biorthogonal algorithm with limited amplification of rounding errors is challenging.
A popular biorthogonal Krylov subspace method for solving large systems of linear
equations is BiCGSTAB [168].
Krylov subspaces implicitly use polynomials, this can be seen by noting that x ∈
Kk(A, v) can be written as x = pk−1(A)v, for some polynomial pk−1 of degree k − 1.
Eigenvalue methods based on Krylov subspaces typically converge first to extreme
eigenvalues of A. If, instead of a polynomial, a rational function underlies the subspace,
i.e., x = rk−1(A)v, the poles of this rational function can be chosen to focus convergence
of eigenvalue methods on specific regions in the complex plane [143]. This idea has
proven to be especially powerful for the approximation of matrix functions [58,138].
Other applications can be found in [133] and references therein.

1.2.2 Gauss quadrature

Quadrature rules for linear functionals arise in quantum physics when trying to compute
the scattering amplitude w>A−1v. One approach to approximate the scattering
amplitude is to use biorthogonal Krylov subspace methods, another is by complex
Gaussian quadrature [150]. In the approximation of highly oscillatory integrals Gauss
quadrature rules lead to kissing polynomials [42]. These polynomials are orthogonal
with respect to a linear functional. The theory of kissing polynomials is well-developed
in classical analysis, however, stable numerical procedures to compute with these
polynomials are still lacking.

Gauss quadrature rules are exact for a space of polynomials up to a certain degree.
Rational Gauss quadrature rules are exact for a space spanned by rational functions
with prescribed poles. If the integrand of the integral of interest can be better
approximated by a rational function, e.g., it has singularities outside the region of
interest and close to its boundary, then rational Gauss quadrature rules are more
appropriate than standard Gauss quadrature rules [54, 81, 139]. To obtain upper
and lower bounds for functionals of the form v>f(A)v, for some function f , rational
functions provide a powerful alternative to polynomials [127].
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1.2.3 Model order reduction

In system theory, a linear, time invariant dynamical system is represented by state
space equations

ẋ(t) = Ax(t) + bu(t)

y(t) = cHx(t)

with a matrix A and vectors b, c. The functions x, y, u vary in time t and represent the
state, output and input of the system, respectively. If the matrix A is very large, it is
interesting to approximate the system, determined by (A, b, c), by a smaller system
(Â, b̂, ĉ). A popular approach to construct the smaller system is by moment matching.
That is, the reduced order model (Â, b̂, ĉ) is constructed such that the first l moments
of both systems correspond

cHAib = ĉHÂib̂, for i = 0, 1, . . . l.

This is related to the approximation of the l first terms in the power series expansion
of the associated transfer function. The biorthogonal Lanczos iteration can be applied
to obtain such a reduced order model [93].

Methods based on polynomial Krylov subspaces will focus on one frequency in the
construction of the reduced order model. This corresponds to approximating a
power series expansion of the original transfer function around a single frequency.
Approximation around multiple frequencies with one reduced model can lead to a
smaller model and thus to a more efficient representation of the original model. For
details we refer to [2, 73].

1.3 Outline

An outline of this text is provided here. Our starting point is numerical linear algebra,
more precisely Krylov subspaces and structured matrices. The goal is to obtain efficient
and numerically stable procedures to solve problems in classical analysis.

Chapter 2 is a preliminary chapter and contains the basic notions that will be used. Two
specific vector spaces are introduced and the notion of orthogonality and biorthogonality
is defined. The relation between (bi)orthogonality and structured matrices is discussed
shortly.

Chapter 3 studies the structured matrices that arise from (polynomial) Krylov
subspaces. The recurrence relations to generate bases for these subspaces, how these
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recurrence relations can be represented by a matrix and which properties this matrix
possesses are the topics of this chapter. For orthogonal bases the core factorization
of the matrix of recurrence coefficients is introduced, which represents the matrix as
a product of essentially 2× 2 unitary matrices multiplied with an upper triangular
matrix. For biorthogonal bases, a nonunitary analogue of the core factorization is
introduced, which is called the eliminator factorization.

Chapter 4 studies the structured matrices that arise from rational Krylov subspaces.
The core and eliminator factorizations are used to derive the structures of these. This
leads to a framework that allows to describe all the possible recurrence relations
for (bi)orthogonal bases. One of the possible recurrence relations is a three term
recurrence, which implies an efficient procedure to construct the bases. The recurrence
coefficients can be captured in a tridiagonal matrix pencil. The results of this chapter
are published in [165].

In Chapter 5 a meaningful generalization of moments to the context of rational
Krylov subspaces is introduced. The connection between rational Krylov subspaces,
moment matching and multi-point Padé approximation is discussed. The displacement
structure of Gram matrices associated with rational Krylov subspaces are studied
and suitable displacement operators are proposed. Gram matrices related to pairs
of Krylov subspaces, one generated with a matrix and the other with the complex
conjugate of the same matrix, are shown to have displacement rank at most two.

Chapter 6 relates polynomials to structured matrices via the recurrence relation
that generates these polynomials. The connection between (bi)orthogonal vectors in
polynomial Krylov subspaces and inner products or linear functionals on the space of
polynomials is identified. Properties shared by polynomials and the related structured
matrices are stated here. Problems formulated for polynomials can, by the theory of
this chapter, be reformulated as problems for certain structured matrices.

Chapter 7 develops the theory that allows the reformulation of problems involving
rational functions into problems for structured matrix pencils. Rational functions
orthogonal with respect to a specific inner product or linear functional induced by
(bi)orthogonal bases for rational Krylov subspaces are described. Results from the
literature on orthogonal rational functions relevant to the topics discussed in this text
are listed.

In Chapter 8 two numerical procedures are proposed, based on the theory developed
in the aforementioned chapters. One procedure provides a Lanczos like iteration
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constructing biorthogonal bases for rational Krylov subspaces using a three term
recurrence relation. This is based on [165]. The second procedure is a Levinson
procedure applied to a specific pair of rational Krylov subspaces. This procedure is
published in [166]. Numerical tests proving the validity of both procedures are included.

Chapter 9 employs the connections between rational Krylov subspaces and rational
functions to reformulate a problem in classical analysis into a problem for structured
matrix pencils. This problem is the computation of a sequence of orthogonal rational
functions for a given inner product or a pair of biorthogonal rational functions for a
linear functional. The reformulated problem is a structured inverse eigenvalue problem
and the remainder of this chapter is dedicated to developing numerical procedures
to solves, update and downdate inverse eigenvalue problems. Some results in this
chapter appeared in [167], and the downdating procedures are based on an article in
preparation [164].

Appendix A contains some proofs that are omitted from the main text.

Appendix B contains the derivation of the rational Lanczos iteration.
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The dependencies among the chapters are shown in Figure 1.1. For Chapter 2 reading
can be restricted to Section 2.1.2, which clarifies the terms orthogonal vectors and
biorthogonal vectors. Dashed lines indicate only a weak dependency, full lines indicate
a strong dependency on another chapter. The left side of the figure uses Krylov
subspaces as a starting point, the right side uses orthogonal polynomials and the
center combines both topics.

Chapter 2

Chapter 3

Chapter 4

Chapter 6

Chapter 7

Chapter 9

Chapter 5

Chapter 8

Figure 1.1: Scheme showing principal dependencies between different chapters.



Chapter 2

Orthogonal and biorthogonal
vectors

The study of orthogonality leads naturally to structured matrices and matrix
factorizations. The arising structured matrices and their relation to (bi)orthogonal
vectors are the main subject of this thesis. Section 2.1 introduces some basic concepts
that are useful later on, such as vector spaces, and formally defines an inner product
and linear functionals used to characterize orthogonality. These formal definitions
are given to avoid confusion, since there are different conventions in the literature.
The connection between (bi)orthogonal vectors and Gram matrices is elaborated on in
Section 2.2. Gram matrices can exhibit displacement structure, which is defined in
Section 2.3 together with other structured matrices. Section 2.4 provides the remaining
concepts required, such as the eigenvalue decomposition, function of a matrix and
grade of a vector. The contents of this chapter are mostly based on the book by Horn
and Johnson [105] and the concepts from functional analysis can be found in standard
texts on this topic [158].

2.1 Vectors

Vectors with some properties, being orthogonal or biorthogonal, are the main objects
of study in this thesis. Orthogonality is a well-known concept, biorthogonality is not
as well-known. Biorthogonality refers to two sets of vectors that are orthogonal with
respect to each other for some linear functional. Section 2.1.1 introduces the vector
spaces appearing in this text and Section 2.1.2 defines (bi)orthogonal vectors and

9
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bases. The discussion on biorthogonality is restricted to the vector spaces introduces
in the former section.

2.1.1 Vector spaces and bases

Vector spaces (or linear space) over some field F are denoted by V. In this text the
only field that is considered is the field of complex numbers, i.e., F = C.
We will, essentially, work with two vector spaces: the space of m-tuples of complex
numbers Cm and the space of complex polynomials P.
A basis for V is a linearly independent subset B which spans the whole vector space V .
The span of a subset, defined by the columns of the matrix B =

[
b0 b1 . . . bk−1

]
, of

a vector space V is the set span{b0, b1, . . . , bk−1} := {α0b0 +α1b1 + · · ·+αk−1bk−1|αi ∈
C, i = 1, 2, . . . , k − 1}. The span of a subset composed of the columns of a matrix B
will be denoted as span{B} = span{b0, b1, . . . , bk−1}.
If span{B} = V , then B is said to span the vector space V . Bases are not unique, and
we will argue below that some bases are more appropriate than others, depending on
the situation. Let (the columns of) B form a basis for some vector space V , then each
element of V has a unique representation in B. An example of a basis for P is the
monomial basis

[
1 z z2 . . .

]
.

A subset S of V is a subspace of V , i.e., S ⊆ V , whenever S itself is a vector space over
C. For example, the space of polynomials up to degree k, denoted by Pk, is the span
of
[
1 z z2 . . . zk

]
and is a subspace of P.

2.1.2 Orthogonality and biorthogonality

Orthogonality relies on an inner product and biorthogonality relies on a linear
functional. These are introduced below together with the notion of (bi)orthogonal
vectors. Bases formed with (bi)orthogonal vectors are called (bi)orthogonal bases
and are the main topic of this manuscript. We will see that these have several nice
properties.

Inner product

An inner product, denoted as 〈., .〉, is defined below. It is a Hermitian positive-definite
sesquilinear form.

Definition 2.1 (Sesquilinear form). Let V,W be vector spaces over C. A map
V ×W → C : (x, y) 7→ 〈x, y〉 is called a sesquilinear form if 〈., .〉 is linear in the first
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and anti-linear in the second variable:

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y ∈ V, z ∈ W, α, β ∈ C;

〈x, αy + βz〉 = ᾱ〈x, y〉+ β̄〈x, z〉 for all x ∈ V, y, z ∈ W, α, β ∈ C.

Definition 2.2 (Hermitian form). A Hermitian form is a sesquilinear form with
V =W that is Hermitian:

〈y, x〉 = 〈x, y〉.

Definition 2.3 (Inner product as positive-definite Hermitian form). An inner product
is a positive-definite Hermitian form

〈x, x〉 > 0 for all x ∈ V\{0},

where the superscript H denotes the Hermitian conjugate.

For Cm, the Euclidean inner product is denoted by 〈., .〉E , that is, for x, y ∈ Cm we
have

〈x, y〉E := yHx.

For P , let p, q ∈ P be some complex polynomials. An inner product can be defined as∫
p(z)q(z)dµ(z), where the bar denotes the complex conjugate and µ is a finite Borel

measure on C with all the associated moments finite. For details see [154]. We consider
inner products of the form

∫
γ
p(z)q(z)α(z)|dz| on P, with α(z) a positive weight

function, γ an arc in the complex plane and where |dz| denotes the arc length [150].
Our focus will be on discrete inner products on the subspace Pm−1, for nodes zi ∈ C
and weights αi > 0, i = 1, . . . ,m,

〈p, q〉m :=
m∑
i=1

αip(zi)q(zi), zi ∈ C,

with p, q ∈ Pm−1.

Orthogonal vectors

Let δij denote the Kronecker delta. A set of vectors {vi}i in a vector space V satisfying

〈vi, vj〉 = ηiδij , ηi ∈ R

is said to be orthogonal with respect to the inner product 〈., .〉. If ηi = 1 for all i, the
set of vectors is called orthonormal.
An orthogonal basis V is a basis for a vector space V formed by vectors {vi}i that are
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orthogonal with respect to an inner product.
Given a set of linearly independent vectors {bi}k−1

i=0 , bi ∈ V and an inner product
〈., .〉 : V × V → C. Then the Gram-Schmidt orthogonalization procedure [122] can be
applied to obtain an orthogonal set of vectors {vi}k−1

i=0 such that span{v0, . . . , vl} =
span{b0, . . . , bl} for l = 0, 1, . . . , k − 1. In finite precision the modified Gram-Schmidt
procedure should be used and some reorthogonalization might be necessary [24, 75,
126,146].

Linear functional

Biorthogonality can be defined with respect to a bilinear form [35] or with respect to
a linear functional [29]. In this manuscript the latter is used. A linear functional L is
a linear mapping of some vector space V into the field C, i.e., L{.} : V → C.

For Pl, polynomials up to degree l, the linear functional L used in this text is defined
by fixing its value for certain polynomials to a scalar from a given sequence of so-called
moments. The sequence is {mi}2k−1

i=0 , mi ∈ C, and the linear functional is defined by

L{zi} = mi, i = 0, 1, . . . , 2k − 1.

The scalars mi are called the (classical) moments of the linear functional if the
monomial basis is used. If another basis is used, these are called modified moments.

Remark 2.1. Consider two distinct subspaces of the space of m-tuples, S1 ⊂ Cm and
S2 ⊂ Cm and the Euclidean inner product 〈., .〉E. For these subspaces the definition
〈., .〉E : S1 × S2 → C is meaningful, however it is only an inner product on S1 ∩ S2.
Suppose we have two sets of vectors {v1, . . . , vk}, vi ∈ S1 and {w1, . . . , wk}, wi ∈ S2
such that vj and wj are related in a meaningful way. Then, applying the Euclidean
inner product to these vectors does not guarantee that 〈vj , wj〉E > 0. Therefore,
when working with distinct subspaces of Cm we interpret the Euclidean inner product
sesquilinear form or, equivalently, a linear functional. We will, however, keep using
the name Euclidean inner product for this case.

Biorthogonal vectors

A pair of sets of polynomials {pi}i and {qj}j , pi, qj ∈ P, is said to be biorthogonal
with respect to L : P → C if they satisfy

L{piqj}

{
= 0, if i 6= j

6= 0, if i = j
.
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They are said to be biorthonormal if it is a biorthogonal pair and L{piqi} = 1.
A pair of distinct sets of vectors {xi}i and {yj}j , with xi, yj ∈ Cm, satisfying

〈xi, yj〉E = δij ,

is said to be biorthogonal. It is not orthogonal, because the property 〈xi, yi〉E > 0
cannot be guaranteed for xi 6= yi.
A pair of bases V =

[
v0 v1 . . . vk−1

]
, W =

[
w0 w1 . . . wk−1

]
for some vector

spaces V,W is called biorthogonal if the sets {vi}k−1
i=0 and {wi}k−1

i=0 are biorthogonal. A
pair of biorthogonal sets of vectors can be generated from a pair of linearly independent
vector sets by the two-sided Gram-Schmidt procedure [135]. However these do not
always exist, a condition for their existence is given in the following section.

2.2 Gram matrices

Gram matrices are an important tool in the study of (bi)orthogonality. A Gram
matrix M can be defined using an inner product or linear functional. Consider an
inner product 〈., .〉 : V × V → C and a set of linear independent vectors {bi}k−1

i=0 in V,
then the associated Gram matrix Mk ∈ Ck×k is

Mk :=


〈b0, b0〉 〈b1, b0〉 . . . 〈bk−1, b0〉
〈b0, b1〉 〈b1, b1〉 . . . 〈bk−1, b1〉

...
...

...
〈b0, bk−1〉 〈b1, bk−1〉 . . . 〈bk−1, bk−1〉

 . (2.1)

This matrix is Hermitian positive-definite thanks to the properties of an inner product.
For the linear functionals in this text a Gram matrix can be defined in the following
way. Consider the Euclidean inner product 〈., .〉E and two sets of linearly independent
vectors {xi}ki=1 and {yj}kj=1, with xi, yi ∈ Cm for i = 1, . . . , k. Then the associated
Gram matrix is

Mk :=


〈x0, y0〉E 〈x1, y0〉E . . . 〈xk−1, y0〉E
〈x0, y1〉E 〈x1, y1〉E . . . 〈xk−1, y1〉E

...
...

...
〈x0, yk−1〉E 〈x1, yk−1〉E . . . 〈xk−1, yk−1〉E

 , (2.2)

which is, in general, an indefinite matrix.
For the linear functional L{.} : P → C and two sets of linearly independent polynomials
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{pi}k−1
i=0 and {qj}k−1

j=0 , with pi, qi ∈ Pi, the associated Gram matrix is

Mk :=


L{p0q0} L{p1q0} . . . L{pk−1q0}
L{p0q1} L{p1q1} . . . L{pk−1q1}

...
...

...
L{p0qk−1} L{p1qk−1} . . . L{pk−1qk−1}

 . (2.3)

Note that at least 2k − 2 moments are required to define L for this Gram matrix.

LR factorization

The LR factorization of a Gram matrix gives rise to (bi)orthogonal vectors. First the
LR factorization must be introduced. Let ai,j denote the entry on row i and column j
of a matrix A ∈ Cm×m.
A lower triangular matrix L ∈ Cm×m satisfies li,j = 0 for i < j and an upper triangular
matrix R ∈ Cm×m satisfies ri,j = 0 for i > j.
The LR factorization of A ∈ Cm×m is

A = LR,

where L ∈ Cm×m is a nonsingular lower triangular and R ∈ Cm×m is a nonsingular
upper triangular matrix.
The LR factorization does not always exist. Lemma 2.1 provides a necessary and
sufficient condition for the existence of this factorization. The principal leading
submatrix of size i of some matrix A ∈ Cm×m is denoted by A(i) ∈ Ci×i.

Lemma 2.1 (Existence of LR factorization [105]). Consider A ∈ Cm×m and suppose
rank(A) = m. If det

(
A(i)) 6= 0, i = 1, . . . ,m, then the LR factorzation of A exists.

A matrix A of which all principal leading submatrices are nonsingular is called strongly
nonsingular or quasi-definite. The LR factorization is not unique, by normalization it
can be made unique. Normalization is done by using a diagonal matrix D ∈ Cm×m,
with diagonal elements di, i = 1, 2, . . . ,m, denoted as D = diag({di}i). A unit (upper)
lower triangular matrix is a (upper) lower triangular matrix with all diagonal elements
equal to 1.
The LDR factorization of A ∈ Cm×m is

A = LDR

with L ∈ Cm×m a unit lower triangular matrix, R ∈ Cm×m a unit upper triangular
matrix and D ∈ Cm×m a nonsingular diagonal matrix. The LDR factorization of a
strongly nonsingular matrix is unique. The LR factorization of a Hermitian positive-
definite matrix A can be written as A = RHR, with R an upper triangular matrix with
nonnegative diagonal entries. This factorization is called the Cholesky decomposition.
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Lemma 2.2 states that sets can be orthogonalized using a factorization of the associated
Gram matrix M .

Lemma 2.2 (Biorthonormal vectors via Gram matrix factorization [51]). Let
X =

[
x0 x1 . . . xk−1

]
and Y =

[
y0 y1 . . . yk−1

]
denote matrices containing

linearly independent vectors in some vector spaces V and W, respectively. Let
Mk ∈ Ck×k be the associated Gram matrix generated by an inner product or a linear
functional. SupposeMk is strongly nonsingular and its LR factorization isMk = LkRk.
Then these factors allow the construction of biorthonormal sets of vectors {vi}i, {wj}j
satisfying, for l = 0, 1, . . . , k − 1,

span{v0, . . . , vl} = span{x0, . . . , xl}, span{w0, . . . , wl} = span{y0, . . . , yl}.

The LR factorization can be used as follows:

• For Mk in (2.1), the Cholesky factorization is Mk = RHk Rk and[
v0 v1 . . . vk−1

]
:=
[
b0 b1 . . . bk−1

]
R−1
k

forms an orthonormal set of vectors with respect to 〈., .〉.

• For Mk in (2.2), the LR factorization is Mk = LkRk and[
v0 v1 . . . vk−1

]
:=
[
x0 x1 . . . xk−1

]
R−1
k ,[

w0 w1 . . . wk−1
]

:=
[
y0 y1 . . . yk−1

]
L−Hk

form a pair of biorthonormal sets of vectors with respect to 〈., .〉E .

• For Mk in (2.3), the LR factorization is Mk = LkRk and[
v0 v1 . . . vk−1

]
:=
[
p0 p1 . . . pk−1

]
R−1
k ,[

w0 w1 . . . wk−1
]

:=
[
q0 q1 . . . qk−1

]
L−>k

form a pair of biorthonormal sets of vectors with respect to L{.} : P → C.

In finite precision arithmetic the above method to generate (bi)orthonormal vectors
has two issues:

1. The Gram matrix tends to be ill-conditioned.

2. The computation of the LR factorization without pivoting is numerically unstable
[183].
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For the Hermitian positive definite Gram matrix Mk in (2.1), an alternative procedure
can be applied. Let Bk ∈ Cm×k, m ≥ k, satisfy Mk = BHk Bk. Then the QR
factorization of Bk = QkRk, with Qk ∈ Cm×k having orthonormal columns and
Rk ∈ Ck×k upper triangular, generates the Cholesky factor Rk. That is Mk =
BHk Bk = RHk Q

H
k QkRk = RHk Rk.

Using the QR factorization is an improvement over the Cholesky decomposition,
however the matrix Bk also tends to be ill-conditioned in the context of Krylov
subspaces.

2.3 Structured matrices

We study alternative methods to generate (bi)orthogonal vectors. These techniques
rely heavily on structured matrices. Matrices can exhibit several kinds of structure.
The structure of tridiagonal and Hessenberg matrices is determined by sparsity, i.e.,
certain entries are zero. Generic nonzero elements in a matrix are denoted by ×. A
Hessenberg matrix Hk ∈ Ck×k is a matrix with zeros below its first subdiagonal, i.e.,
hi,j = 0 for i > j + 1. A Hessenberg matrix will be represented pictographically as

× × . . . × × ×
× × . . . × × ×
× . . . × × ×

. . . ...
...

...
× × ×
× ×




→

The leftshift matrix Zk ∈ Ck×k is a Hessenberg matrix with ones on its subdiagonal
and zeros elsewhere

Zk :=


0
1 0

1 0
. . . . . .

1 0

 .
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A tridiagonal matrix Tk ∈ Ck×k satisfies ti,j = 0 for |i− j| > 1 and its pictograph is

× ×
× × ×

× ×
. . .

. . . . . . ×
× × ×
× ×




→

Matrices with low rank structure are matrices which have submatrices that are of low
rank. For example, the inverse of a nonsingular Hessenberg matrix has in its lower
triangular part low rank structure. More precisely, any submatrix that can be taken
in its lower triangular part has rank equal to 1. For details concerning rank structure
we refer to the literature [61,66–68,106,173,174,176].

Another type of structure, especially important for Gram matrices, is displacement
structure.

Definition 2.4 (Displacement structure [134]). The displacement structure of a matrix
M is the image L(M) of an appropriate linear displacement operator L applied to a
matrix M . The operator L is appropriate when it reveals the structure of M . Two
types of linear operators L can be used, for a fixed pair of operator matrices {A,B},

• Sylvester type, L = ∇A,B

L(M) = ∇A,B(M) = AM −MB.

• Stein type, L = ∆A,B

L(M) = ∆A,B(M) = M −AMB.

For further details, we refer to [116,134]. We will use the Sylvester type and we will
refer to A and B as displacement operators. The displacement rank of M with respect
to the displacement operators A,B is defined as the rank of the resulting matrix
L(M).
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2.4 Matrix theory

This section groups all remaining concepts from matrix theory that have not been
introduced above.

Eigenvalue decomposition

A scalar λ ∈ C is called an eigenvalue of a matrix A ∈ Cm×m if

Ax = λx

is satisfied for a nonzero vector x ∈ Cm, called the right eigenvector corresponding to
λ. A left eigenvector of A is a nonzero vector y ∈ C1×m that satisfies yA = λy.
Let I denote the identity matrix, its size will be clear from the context. An eigenvalue
can also be characterized as a value λ such that det(A − λI) = 0 is satisfied. The
polynomial p(z) = det(A− zI) is called the characteristic polynomial.
The set of all eigenvalues of A is called the spectrum of A and is equal to

σ(A) = {λ ∈ C|det(A− λI) = 0}.

Suppose that A ∈ Cm×m has m linearly independent eigenvectors xi, with
corresponding eigenvalue λi, then its eigenvalue decomposition is

A = XΛX−1,

where Λ = diag(λ1, . . . , λm) and X :=
[
x1 . . . xm

]
. Such a matrix is called

diagonalizable.
A matrix pencil consisting of matrices A,B ∈ Cm×m is denoted as (A,B) ∈ Cm×m ×
Cm×m. The generalized eigenvalues of a matrix pencil (A,B) are the scalars belonging
to the spectrum of the pencil

σ(A,B) = {λ = α/β ∈ C|det(βA− αB) = 0}, with C := C ∪ {∞}.

Grade of a vector

For eigenvectors x of a matrix A ∈ Cm×m the vectors x and Ax are linearly dependent.
For an arbitrary vector v ∈ Cm (which is not an eigenvector) this does not hold.
However, there does exist a relationship between v,Av, . . . , Agv, i.e., for some nonzero
coefficients αi

(α0I + α1A+ · · ·+ αg−1A
g−1 +Ag)v = 0.

Let g be the smallest integer for which this relation is satisfied. The polynomial
p(z) = α0 +α1z+ · · ·+αg−1z

g−1 + zg is the minimum polynomial of v with respect to
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A. The degree g of the minimum polynomial p(z) is called the grade of v with respect
to A. Sometimes the degree of v is denoted by gv, if multiple vectors are considered
at once. The grade will play an important role in the classification of breakdowns in
the procedures discussed throughout this manuscript.
A companion matrix Z for a monic polynomial p(z) = zm +αm−1z

m−1 +αm−2z
m−2 +

· · ·+ α1z + α0, with αi ∈ C is defined as

Z :=



0 −α0
1 0 −α1

1 . . . ...
. . . 0 −αm−2

1 −αm−1

 .

The roots of the polynomial p(z) correspond to the eigenvalues of the associated
companion matrix Z, i.e., p(λ) = 0 if λ ∈ σ(C).

Function of a matrix

Let f be a function defined on the spectrum of A ∈ Cm×m and suppose this matrix is
diagonalizable, i.e., A = XΛX−1, with Λ = diag({λi}i). Then

f(A) := Xf(Λ)X−1 = Xdiag({f(λi)}i)X−1.

See [104] for details.





Chapter 3

Structured matrices in
polynomial Krylov subspaces

Computing eigenvalues of very large matrices and solving systems of equations are
probably the most known uses of Krylov subspaces. If matrix-vector multiplication can
be performed cheaply, then Krylov subspaces are a powerful tool to approximate the
large matrix. Aside from the practical use for very large matrices, Krylov subspaces
are a useful theoretical tool since they form a link between matrix theory and other
disciplines or topics in mathematics, e.g., orthogonal polynomials, moment problems,
quadrature and Padé approximation. These links allow translating some problems
in these disciplines to problems in linear algebra. Numerical linear algebra offers
many well-studied and efficient algorithms to solve these problems on a finite precision
machine. Often the most effective methods for finite precision computation, in any of
these disciplines, are methods from numerical linear algebra [70,78]. The development
and study of efficient algorithms starts with research on the matrix structures appearing
in the problem to be solved. Studying the structure of matrices appearing in Krylov
subspace computations allows to exploit this structure for efficiency, by using less
memory and/or less operations, and to study the stability of the algorithm in detail.
This chapter is dedicated to the matrix structures that are linked to Krylov subspaces.
Polynomial Krylov subspaces and a suitable inner product on these spaces are
introduced in Section 3.1. The following sections discuss different bases for polynomial
Krylov subspaces, their theoretical and numerical properties and how to generate
them. Section 3.2 discusses the most straightforward basis, a Krylov basis. This basis
is, in general, not suited for numerical computation and two alternative types of bases
are discussed with better numerical properties, orthogonal bases in Section 3.3, which
possess inherent stability properties, and biorthogonal bases in Section 3.4, which

21
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inherently lead to efficient numerical procedures. Important special cases, e.g., where
biorthogonal bases reduce to an orthogonal basis, are discussed in Section 3.5. A
conclusion is formulated in Section 3.6.

3.1 Polynomial Krylov subspaces

The origin of polynomial Krylov subspaces can be traced back to Krylov [118], who
used them to compute the characteristic polynomial explicitly. The form in which
they are still used today has its origin in several papers from the 1950s [3,102,121].
Polynomial Krylov subspaces K(A, v) for a given matrix A ∈ Cm×m are subspaces
formed by consecutive powers of A multiplied by some vector v ∈ Cm, called the
starting vector,

K(A, v) = span{v,Av,A2v, . . . }.

The vectors {Aiv}i spanning a Krylov subspace become linearly dependent when the
grade g of the starting vector v with respect to A is reached. Krylov subspaces spanned
by fewer than g vectors are meaningful as well and will be the main object of study
throughout this manuscript. Definition 3.1 defines polynomial Krylov subspaces.

Definition 3.1 (Polynomial Krylov subspace [118]). A polynomial Krylov subspace
of dimension k ≤ g of a matrix A ∈ Cm×m with starting vector v ∈ Cm is

Kk(A, v) = span{v,Av,A2v, . . . , Ak−1v}.

Krylov subspaces are nested, which is advantageous when computing (implicitly) with
them.

Property 3.1 (Nestedness of Krylov subpaces). Consider Kk(A, v), k = 1, 2, . . . ,
then

Kk ⊆ Kk+1.

When AKk(A, v) = Kk(A, v), then Kk+1(A, v) = K(A, v), and we have found an
invariant subspace of A. This occurs when k = g, and thus the grade g can be
equivalently characterized as the value at which AKg(A, v) = Kg(A, v). Finding an
invariant subspace is interesting in, e.g., the QR algorithm, where at the discovery of
an invariant subspace, the problem can be decomposed into two smaller problems [183,
p.525]. Note that the QR algorithm applied to Hessenberg matrices is intimately
connected to Krylov subspaces [181].
Invariant subspaces contain a lot of information about A, however finding invariant
subspaces can be very costly, especially for large A. Even if Kk(A, v) is not an invariant
subspace, it still contains some information about A. In order to be able to compute
with Krylov subspaces, a basis must be constructed. Choosing a different basis will
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alter the representation of the underlying linear operator on the Krylov subspace.
Bases which possess some orthogonality property are the most interesting. The notion
of orthogonality requires a suitable inner product, this is the Euclidean inner product
on Cm

Cm × Cm → C : (x, y) 7→ 〈x, y〉E := yHx. (3.1)

Now, for subspaces Kk(A, v) of the vector space Cm endowed with the Euclidean
inner product 〈., .〉E (3.1), three bases are discussed. A Krylov basis possesses no
orthogonality properties, an orthogonal basis consists of vectors that are orthogonal
to one another and biorthogonal bases consists of a pair of bases whose vectors are
orthogonal to the vectors in the other basis with which they form the pair.

3.2 Krylov basis

The most straightforward basis for Kk(A, v) is the Krylov basis, which consists of
the vectors v,Av, . . . Ak−1v. The Krylov matrix Bk is composed of these vectors, see
Definition 3.2.

Definition 3.2 (Krylov matrix). The matrix Bk ∈ Cm×k, k ≤ g ≤ m, associated
with a Krylov subspace Kk(A, v) is called the Krylov matrix (of Kk) if

Bk =

 | | |
v Av . . . Ak−1v
| | |

 .
An invariant subspace is found when rank(Bk) < k, i.e., the columns of Bk become
linearly dependent. Theorem 3.1 relates the rank of the Krylov matrix to the
eigenvalues of a nondefective matrix A and to the starting vector v. The grade
g plays an important role.

Theorem 3.1 (Linear independence of Krylov matrix). Let v ∈ Cm be the starting
vector and A ∈ Cm×m be a nondefective matrix, i.e., it has the eigenvalue decomposition
A = XΛX−1, where Λ = diag(λ1, . . . , λm). Consider Kk(A, v) and corresponding
Krylov matrix Bk ∈ Cm×k. Then rank(Bk) = min{k, g}, with g the grade of A with
respect to v. Moreover g ≤ min{c, d} for c the number of nonzero elements in X−1v
and d the number of distinct eigenvalues.

Proof. A similar derivation appeared in [63] for normal, square matrices, the following
derivation is a generalization.
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Substitute A = XΛX−1 in Bk and set w := X−1v

Bk =

 | | |
v Av . . . Ak−1v
| | |

 =

 | | |
v XΛX−1v . . . (XΛX−1)k−1v
| | |



= X


w1 λ1w1 . . . λk−1

1 w1
w2 λ2w2 . . . λk−1

2 w2
...

...
...

wm λmwm . . . λk−1
m w1



= X


w1

w2
. . .

wm


︸ ︷︷ ︸

=:W


1 λ1 . . . λk−1

1
1 λ2 . . . λk−1

2
...

...
...

1 λm . . . λk−1
m


︸ ︷︷ ︸

=:Vk

.

Hence, rank(Vk) = min{k, d}. Clearly rank(W ) = c, since it is a diagonal matrix with
elements wi. Then

rank(Bk) = rank(XWVk) = rank(WVk) = min{k, g}

≤ min{rank(W ), rank(Vk)} = min{c, d}.
To conclude, rank(Bk) = min{g, k} ≤ min{c, d, k}.

Example 3.1 illustrates Theorem 3.1.
Example 3.1. Consider a diagonal matrix A with some multiple eigenvalues and a
starting vector v with a component along the direction of every eigenvector

A =


ı

5
ı

1
2

5

 , v =


1
1
1
1
1
1

 .

The resulting Krylov matrix corresponding to K(A, v) is

B =


1

1
1

1
1

1




1 ı . . . ı6

1 5 . . . 56

1 ı . . . ı6

1 1 . . . 1
1 2 . . . 26

1 5 . . . 56
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and has rank 4, equal to the number of distinct eigenvalues d.
Consider another starting vector which does not have a component along the direction
of an eigenvector belonging to a simple eigenvalue

ṽ =


1
1
1
0
1
1

 .

Then the resulting Krylov matrix

B =


1

1
1

0
1

1




1 ı . . . ı6

1 5 . . . 56

1 ı . . . ı6

1 1 . . . 1
1 2 . . . 26

1 5 . . . 56

 =


1 ı . . . ı6

1 5 . . . 56

1 ı . . . ı6

0 0 . . . 0
1 2 . . . 26

1 5 . . . 56


has rank equal to 3, i.e., the case g < min{c, d}.

Corollary 3.1. If A has distinct eigenvalues and v contains a component along the
direction of every eigenvector xi in X, i.e., v =

∑m
i=1 αixi, with αi 6= 0 for all i. Then,

by Theorem 3.1, rank(Bk) = k for k = 1, 2, . . . ,m and Km(A, v) = Cm.

Theorem 3.1 provides an expression for the rank of the Krylov matrix and thus for the
maximum dimension of the Krylov subspace. To see what happens when the maximal
rank, equal to g, is reached and why this is a good situation, we take a look at the
recurrence relations underlying the Krylov matrix in Section 3.2.1.

3.2.1 Recurrence relation

The recurrence relation underlying the Krylov matrix is very simple and gives, when
breakdown of the recurrence relation occurs, the companion matrix of the minimal
polynomial of A. A breakdown of the recurrence relation takes place when the
dimension of Kk(A, v) reaches the grade g, i.e., k = g. The recurrence relation is
provided in Lemma 3.1 and Corollary 3.2 shows the connection to the companion
matrix of the minimal polynomial of A in case of a breakdown.
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Lemma 3.1 (Krylov matrix recurrence relation). Let Bk be the Krylov matrix
corresponding to Kk(A, v), k < g, then the following recurrence relation is satisfied

ABk = BkZk +Akve>k , Zk :=


0
1 0

1 0
. . . . . .

1 0

 ∈ Ck×k. (3.2)

Proof. Straightforward.

Equivalently, with Bk+1 the Krylov basis for Kk+1(A, v), the relation (3.2) can be
written as

ABk = Bk+1Zk, Zk :=



0
1 0

1 0
. . . . . .

1 0
1


∈ C(k+1)×k.

The line underneath Zk indicates that the matrix is of size (k + 1)× k and implies
that the term Akve>k is included in the basis.
Corollary 3.2 (Companion matrix). Let Bg denote the Krylov matrix for Kg(A, v),
with g the grade of v with respect to A, then the following recurrence relation is satisfied

ABg = BgZ, Z :=



0 α0
1 0 α1

1 0 α2
. . . . . . ...

1 0 αg−2
1 αg−1


, (3.3)

with α0, α1, . . . , αg−1, the coefficients of the minimal polynomial of v with respect to
A in the monomial basis.

Proof. Since Kg(A, v) is invariant under multiplication by A, vector Agv ∈ Kg(A, v)
and can therefore be represented by

Agv =
g−1∑
i=0

αiA
iv = Bg

[
α0 α1 · · · αg−1

]>
.
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The companion matrix Z from Corollary 3.2 represents the operator A restricted to
the invariant subspace Kg(A, v). Hence, the eigenvalues of Z are exact eigenvalues of
A.
The recurrence matrix Zk contains little information about the matrix A until there is
a breakdown at k = g. To obtain a matrix Zk, k < g, which contains more information,
we can replace its last column by some projection of Akv onto Kk(A, v). This can be
achieved by the Moore-Penrose pseudo-inverse B†k [90] of the Krylov matrix Bk. Since
Bk has linearly independent columns for k < g, B†k is the left inverse of Bk. Therefore
we have, from Lemma 3.1, B†kABk = Zk +B†kA

kve>k . The matrix of interest is then

Ẑk := Zk +B†kA
kve>k . (3.4)

Hence, we have constructed a smaller matrix Ẑk ∈ Ck×k representing A ∈ Cm×m in
the subspace Kk(A, v). The pseudo-inverse can be interpreted as a combination of
two consecutive projectors [20]. A more detailed discussion on the pseudo-inverse in
relation to Krylov subspaces and minimization properties is available in the thesis of
Güttel [98, Chapter 3].

3.2.2 Recurrence relation - inverse companion matrix

An alternative recurrence relation is provided. It seems to be merely a curiosity,
however, it will prove to be useful in studying matrix structures of recurrence matrices
for biorthogonal bases. The recurrence relation is stated in Lemma 3.2, and Corollary
3.3 shows the recurrence matrix when an invariant subspace is reached.

Lemma 3.2 (Left Krylov matrix recurrence relation). Let Bk be the Krylov matrix
corresponding to Kk(A, v), k < g, with g the grade of v with respect to A. Then the
following recurrence relation is satisfied

ABkZ̃k + ve>1 = Bk, Z̃k =


0 1

0 1
. . . . . .

0 1
0

 ∈ Ck×k. (3.5)

Proof. Straightforward.

Corollary 3.3 (Inverse companion matrix). Assume that A is nonsingular and that
k = g in Lemma 3.2. Then the recurrence relation

ABgZ̃ = Bg
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is satisfied, where Z̃ is the inverse of the companion matrix of the minimal polynomial
p(z) = α0 + α1z + · · ·+ αg−1z

g−1 + zg of v with respect to A.

Proof. The assumption that A is nonsingular guarantees that the companion matrix Z
satisfying AKg = KgZ is nonsingular. Then AKgZ

−1 = Kg and clearly Z̃ = Z−1.

The inverse companion matrix Z̃ has a particular rank structure in its lower triangular
part. It is a so-called semiseparable matrix: any (rectangular) submatrix that can be
taken in the lower triangular part, including the diagonal, has rank ≤ 1. For more
information on the specific rank structure exhibited by Z̃, we refer to literature [68,176].
We will study this rank structure via a particular factorization, the core factorization,
introduced in the section on orthogonal bases for Kk(A, v), Section 3.3. The discussion
is postponed since the orthogonal basis allows for a more natural study of the core
factorization.

Again, the Moore-Penrose pseudo-inverse can be used to obtain intermediate matrices
which contain some information of A. From the recurrence relation in Lemma 3.2 and
under the assumption that A is nonsingular it follows that

(ABk)†(ABk)Z̃k + (ABk)†ve>1 = (ABk)†Bk

Z̃k + (ABk)†ve>1 = (ABk)†Bk

where we used that Bk has linearly independent columns and A is nonsingular such
that the equality (ABk)†(ABk) = I is valid. The matrix of interest then is

Z̃k + (ABk)†ve>1 . (3.6)

Note that this matrix has the same lower triangular rank structure as Z̃.

3.2.3 Numerical procedure

Mathematically Equation (3.4) and Equation (3.6) provide a projection of A onto
a Krylov subspace. However recurrence relation (3.5) requires the pseudo-inverse
of ABk, while it might be too expensive to compute the inverse of A. Recurrence
relation (3.3) needs only the pseudo-inverse of Bk. The columns of Bk are the vectors
which are used in the power method and, as is well-known, the vectors in the power
sequence v,Av,A2v, . . . start to align with the eigenvector belonging to the dominant
eigenvalue [90]. This can lead to numerical linear dependence, and will certainly lead
to a larger condition number as k increases [11, 90]. For more details we refer to
the paper by Beckermann [11], where the condition number for Krylov matrices for
Hermitian matrices A is shown to increase exponentially in some cases. This suggests
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that one should try to find a numerically better behaved basis: an orthogonal basis
and biorthogonal bases.

3.3 Orthogonal basis

Orthogonal bases are more suited than Krylov bases for computation on a finite
precision machine. A nested orthogonal basis Qk =

[
q0 q1 . . . qk−1

]
∈ Cm×k for

Kk(A, v) spans the nested subspaces

span{Qi} := rank{q0, q1 . . . , qi−1} = Ki(A, v)

and satisfies the orthogonality property

qi ⊥ Ki(A, v), i = 2, 3, . . . k − 1.

An orthonormal basis is an orthogonal basis with the normalization

〈qi, qi〉E = 1, i = 0, 1, . . . , k − 1

and for this case the orthogonality condition can be compactly denoted as

QHk Qk = I.

Since a Krylov matrix Bk, with k < g, has linearly independent columns, the Gram-
Schmidt orthogonalization procedure can be applied to these columns. The result is a
matrix with orthonormal columns. The matrix version of the Gram-Schmidt procedure
is the QR-factorization, so we have

Bk = QkRk, with QHk Qk = I and Rk upper triangular.

Using the QR factorization of Bk the recurrence relation for nested orthonormal bases
of Krylov subspaces is derived in Section 3.3.1. The recurrence matrix contains all
recurrence coefficients and will exhibit a particular structure, namely Hessenberg
structure. Section 3.3.2 introduces a factorization using core transformations to factor
this Hessenberg matrix. This factorization allows us to obtain an alternative recurrence
relation in Section 3.3.3, which is the equivalent of the recurrence relation in Section
3.2.2. The structure of the recurrence matrix in this alternative recurrence relation is
useful to study the matrix structures in Section 3.4.

3.3.1 Recurrence relation

The recurrence relation for an orthonormal basis Qk for Kk(A, v) is provided in Lemma
3.3. Using the QR factorization of the Krylov basis it can be derived starting from
the Krylov recurrence relation (3.2).
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Lemma 3.3 (Orthonormal Krylov basis recurrence relation). Consider a nested
orthonormal basis Qk+1 ∈ Cm×(k+1) for Kk+1(A, v), k < g. Then a Hessenberg matrix
Hk ∈ C(k+1)×k exists such that

AQk = Qk+1Hk = QkHk + hk+1,kqke
>
k , (3.7)

where qk = Qk+1ek+1.

Proof. This proof is inspired by proofs from the literature [90, 169]. First note that a
nested orthonormal basis for Kk(A, v) must satisfy Q̃k = BkR̃k, for some nonsingular
upper triangular matrix R̃k. By the uniqueness of the QR decomposition, this is
(essentially) the same orthogonal matrix as obtained by the QR decomposition of
Bk = QkRk, in other words Q̃k = QkD, for a unitary diagonal matrix D. Substitute
the QR decomposition into (3.2)

ABk = BkCk +Akve>k

AQkRk = QkRkCk +Akve>k

AQk = Qk RkCkR
−1
k︸ ︷︷ ︸

Ĥk

+Akve>k R−1
k = QkĤk + 1

rkk
Akve>k

The term Akv = Bk+1ek+1 can be written in terms of the orthonormal basis spanned
by columns of Qk+1 = Bk+1R

−1
k+1: let

Rk+1 =
[
Rk r̃
0 rk+1,k+1

]
then

Akv = Qk+1Rk+1ek+1 = Qkr̃ + rk+1,k+1qk.

Then substitution in the above recurrence relation results in

AQk = QkĤk + 1
rkk

(
Qkr̃ + rk+1,k+1qke

>
k

)
= QkHk + rk+1,k+1

rkk
qke
>
k ,

where Hk := Ĥk + 1
rkk

Qkr̃.

The orthonormal basis Qk for Kk(A, v) can be obtained by applying the Gram-Schmidt
orthogonalization procedure to the Krylov matrix Bk or, equivalently, computing its
QR decomposition. The associated recurrence matrix Hk has Hessenberg structure.
Since these imply the construction of the ill-conditioned Krylov matrix Bk, they are
not suited for numerical computation. A better method to construct Qk and Hk in
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finite precision is the Arnoldi iteration [3] discussed in Section 3.3.4. The Arnoldi
iteration is in essence the Gram-Schmidt procedure applied to well-chosen vectors.
Projection of A onto Kk(A, v) with the orthogonal basis Qk does not need to be
explicitly computed if the recurrence matrix Hk is available, since QHk Qk = I, QHk qk =
0 and therefore

QHk AQk = QHk QkHk +QHk qke
>
k = Hk. (3.8)

That is, the recurrence matrix Hk is the orthogonal projection of A onto Kk(A, v).

Normal matrices

The Hessenberg matrix Hk in the orthogonal projection (3.8) inherits some properties
of the matrix A:

• if AH = A, then HH
k = Hk, i.e., a Jacobi matrix,

• if AHA = I and k = m, then HH
mHm = I, i.e., a unitary Hessenberg matrix

[36,155].

3.3.2 Core factorization

A natural tool to study the structures of the matrices appearing in this manuscript is
the core factorization. The core factorization is a QR factorization where the unitary
matrix Q is represented as a product of core transformations.

Definition 3.3 (Core transformations). A core transformation matrix Ci ∈ Cm×m is
a unitary matrix of the form

Ci =


Ii−1

× ×
× ×

Im−i−1

 , (3.9)

where Ik denotes the identity matrix of size k × k.

Core transformations are essentially 2× 2 matrices, since their only active part is a
2 × 2 diagonal block. The parameter i in Ci indicates where, on the diagonal, the
active block appears, and Ci denotes the class of all these core transformations.
The pictographic notation for Ci ∈ Ci is �� , with the top arrow pointing to row i

and the bottom arrow pointing to row i+ 1. Example 3.2 shows the action of core
transformations and illustrates how the pictographic notation is used.
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Example 3.2. Consider A ∈ C4×4 and core transformations Ci ∈ Ci. The action of
core transformations will be visualized, an × indicates a generic nonzero element and
⊗ an element altered by a core transformation. Consider premultiplication of A with
C3 and C2, i.e., C3C2A, pictographically this is

× × × ×
× × × ×
× × × ×
× × × ×

�
�

�
�

=
��

× × × ×
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
× × × ×

=

× × × ×
× × × ×
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗

For postmultiplication AC3C2 we have

× × × ×
× × × ×
× × × ×
× × × ×

�
�

�
�

= ��

× × ⊗ ⊗
× × ⊗ ⊗
× × ⊗ ⊗
× × ⊗ ⊗

=

× ⊗ ⊗ ×
× ⊗ ⊗ ×
× ⊗ ⊗ ×
× ⊗ ⊗ ×

As Example 3.2 illustrates, premultiplication with Ci only affects the ith and (i+ 1)st
rows of a matrix and postmultiplication the ith and (i+ 1)st columns.
The unitary matrix of the QR-factorization of a Hessenberg matrix can be represented
in terms of core transformations. Moreover, the structure in the lower triangular part of
a Hessenberg matrix, the nonzero subdiagonal, is reflected in the core transformations.
Lemma 3.4 states this more formally.

Lemma 3.4 (Core factorization of Hessenberg matrices). Consider a Hessenberg
matrix Hk ∈ Ck×k, the unitary matrix in the QR factorization of Hk can be expressed
as Hk = C1C2 . . . Ck−1R, where Ci ∈ Ci.

The product of core transformations
∏
i Ci with strictly increasing parameter i and

an upper triangular R constitute the core factorization of a Hessenberg matrix. A
visualization of this core factorization and resulting Hessenberg matrix is shown in
Figure 3.1.

The product of core transformations contains all information on the lower triangular
structure of the resulting matrix. We will refer to the product of core transformations
with strictly increasing parameter as a descending pattern, this name arises from the
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R

��
��

. . .
��

= H

Figure 3.1: Core factorization
(∏k−1

i=1 Ci

)
R of a Hessenberg matrix H ∈ Ck×k

visual representation

C1C2 . . . Ck−1 =

��
��

. . .
��

.

Note that for k ≤ g the Hessenberg matrix Hk appearing in the (3.7) is a proper
(also called unreduced) Hessenberg matrix, i.e., a Hessenberg matrix with only
nonzero elements on its subdiagonal. The core factorization of proper Hessenberg
matrices consists of a descending pattern of nontrivial core transformations, i.e.,
H =

(∏k−1
i=1 Ci

)
R, with Ci 6= I.

Next we consider the core factorization of the leftshift matrix appearing in the Krylov
recurrence relation. Afterwards, in Section 3.2.2, the core factorization is used to
derive an alternative representation of the recurrence matrix for an orthogonal basis.

Leftshift matrix

The recurrence matrices associated with Krylov bases can also be factorized using
core transformations. Consider Zk from Lemma 3.1 and let Ċ :=

[
0 1
1 0

]
, then

Zk =
[
Ċ

Ik−2

]1
Ċ

Ik−3

 · · ·
Ik−3

Ċ
1

Ik−2
0 0
1 0

 .
The last matrix in the product is not a core transformation, if we consider Ẑk from
(3.4), then the last matrix is also a core transformation.
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3.3.3 Alternative recurrence relation - inverse Hessenberg matrix

The core factorization facilitates the study of structures in matrices. For example the
fact that a Hessenberg matrix corresponds to a descending pattern. Starting from the
recurrence relation (3.7) with a Hessenberg recurrence matrix we derive an alternative
form of the recurrence matrix with an interesting structure. This alternative form
is obtained by moving the recurrence matrix to the left-hand side of the recurrence
relation. To do so, manipulations of the core transformations are applied. The transfer
through property formulated in Lemma 3.5 will allow a characterization of the structure
of the alternative recurrence matrix.

Lemma 3.5 (Transfer through property [172]). A pattern (of core transformations)
can be transferred through a nonsingular upper triangular matrix R without altering
the pattern. That is, for an upper triangular R ∈ Cm×m and Ci ∈ Ci ⊂ Cm×m there
exist an upper triangular R̃ ∈ Cm×m C̃i ∈ Ci ⊂ Cm×m such that∏

σ(i)

Ci

R = R̃

∏
σ(i)

C̃i

 ,

where σ(i) is some permutation of the sequence i = 1, 2, . . . ,m− 1.

Example 3.3 clarifies the statement in Lemma 3.5.

Example 3.3. Consider core transformations Ci, C̃i ∈ Ci and nonsingular upper
triangular matrices R, R̃. Then C1C3C2C4R = R̃C̃1C̃3C̃2C̃4. The matrices involved
will generally change (its elements), but the pattern, i.e., the mutual ordering of the
core transformations (and therefore the structure of the resulting matrix) remains the
same. This is shown in Figure 3.2.

× × × × ×
× × × ×
× × ×
× ×
×

��
�

�
�

�
��

=

��
�

�
�

�
��

× × × × ×
× × × ×
× × ×
× ×
×

=

× × × × ×
× × × × ×
× × × ×
× × × ×

× ×

Figure 3.2: Illustration of transfer through property of the pattern C1C3C2C4.

Lemma 3.6 states an obvious result which is used in Lemma 3.7.

Lemma 3.6 (Inverse of core transformations). The class of core transformations Ci
is closed under inversion. More specifically, let Ci ∈ Ci then C−1

i = CHi ∈ Ci.
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Proof. Follows from the fact that Ci is unitary.

Lemma 3.7 (Inverse Hessenberg recurrence matrix). Consider a nested orthogonal
basis Qk+1 ∈ Cm×(k+1) for Kk+1(A, v), k < g. The matrix Qk satisfies

AQkH
inv
k = Qk+1

[
Ik

× . . . ×

]
, (3.10)

where H inv
k ∈ Ck×k has a core factorization with an ascending pattern, under the

assumption that it is nonsingular.

Proof. Consider the recurrence relation from Lemma 3.3, with Hk in its core
factorization and postmultiply and write H−1

k in its factored form:

AQk = QkHk + hk+1,kqke
>
k = Qk

(
k−1∏
i=1

Ci

)
RH + hk+1,kqke

>
k

AQkR
−1
H = Qk

(
k−1∏
i=1

Ci

)
+ (e>k R−1

H ek)hk+1,kqke
>
k

AQkR
−1
H CHk−1 . . . C

H
2 C

H
1 = Qk + (e>k R−1

H ek)hk+1,kqke
>
k C

H
k−1 . . . C

H
2 C

H
1

AQk R
−1
H

(
k−1∏
i=1

Ci

)H
︸ ︷︷ ︸

=:Hinv
k

= Qk + E,

where E := (e>k R
−1
H ek)hk+1,kqke

>
k C

H
k−1 . . . C

H
2 C

H
1 . Using Lemma 3.5 the core

factorization of H inv
k is manipulated to arrive at the usual form, see Figure 3.3.

To complete the proof note that

Qk + qk
[
× . . . ×

]
=
[
Qk qk

]


1
. . .

1
× . . . ×

 .

In the proof of Lemma 3.7 the structure of H inv
k is derived without the need to explicitly

compute the elements nor to rely on the nullity theorem. The nullity theorem links
structured rank blocks in some nonsingular matrix A to structured rank blocks in A−1.
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−1

RH


��

��

. . .
��


H

= R−1
H

�
�

�
�

··
·

��

= R̃

�
�

�
�

··
·

��

Figure 3.3: Core factorization manipulation.

For details on the nullity theorem, see the paper by Vandebril and Van Barel [173]
and references therein. An alternative proof for Lemma 3.7 can be formulated which
follows the proof of Lemma 3.3. Starting from the alternative recurrence relation for
the Krylov basis provided in Lemma 3.2 and using the QR factorization of the Krylov
matrix.
The lower triangular structure of the inverse Hessenberg recurrence matrix (3.10)
will be important later, Definition 3.4 formalizes this structure and introduces a
pictographic notation.

Definition 3.4 (Inverse Hessenberg structure). A matrix Hk with inverse Hessenberg
structure, or short, inverse Hessenberg matrix is a matrix that allows a core
factorization with a strictly ascending pattern of core transformations, i.e., Hk =
Ck−1 . . . C2C1R. A shorthand notation will be used: The full lines enclose elements

R

�
�

�
�

··
·

��
→

without rank structure and dashed lines enclose submatrices which exhibit low rank
structure.

Inverse Hessenberg matrices are also called Hessenberg-like matrices in the literature
[175]. Hessenberg and inverse Hessenberg matrices both belong to the class of
generalized Hessenberg matrices. These enjoy many interesting properties, such
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as the product of a generalized Hessenberg and a nonsingular upper triangular matrix
is again a generalized Hessenberg matrix and the class of generalized Hessenberg
matrices is closed under inversion. For a full discussion on generalized Hessenberg
matrices we refer to the literature [61,68].
Note the essential difference between the recurrence matrix in Lemma 3.3, where
a column is appended to the already computed recurrence matrix, and Lemma 3.7,
where all the elements of the recurrence matrix change at each expansion of the Krylov
subspace.

3.3.4 Arnoldi iteration

The Arnoldi iteration computes an orthogonal basis for Kk(A, v) and simultaneously
provides the orthogonal projection of A onto Kk(A, v). Essentially the Arnoldi iteration
applies the Gram-Schmidt orthonormalization procedure to a well chosen representative
for Akv in Kk+1(A, v) constructed from A and a vector in the subspace Kk(A, v) =
span{v,Av, . . . , Ak−1v} for which an orthogonal basis Qk is already available. For
polynomials pi of exact degree i we have

Kk(A, v) = span{v,Av, . . . , Ak−1v} = span{p0(A)v, p1(A)v, . . . , pk−1(A)v},

and Kk(A, v)∪{Apk−1(A)v} = Kk+1(A, v). Hence, any vector of the form Apk−1(A)v
is a suitable candidate to expand Kk(A, v) to Kk+1(A, v).
This is the idea behind a continuation vector. A continuation vector pk−1(A)v ∈
Kk(A, v), pk−1 ∈ Pk−1 of exact degree, is represented in some basis B for Kk(A, v).
For some τk ∈ Ck, with e>k τk 6= 0, the continuation vector is Bτk = pk−1(A)v.
The orthogonal basis Qk is a well-conditioned basis for Kk, so it is natural to take
B = Qk, i.e., pk−1(A)v = Qkτk. In the Arnoldi iteration the orthonormal basis Qk for
Kk(A, v) and continuation vector τk = ek is chosen, thus pk−1(A)v = Qkek = qk−1.
Orthonormalizing Apk−1(A)v = Aqk−1 provides qk, thereby obtaining the orthonormal
basis Qk+1 =

[
Qk qk

]
for Kk+1(A, v). Algorithm 1 contains the Arnoldi iteration.

There is no need to explicitly project A onto Kk(A, v) via the formula QHk AQk = Hk,
since the recurrence matrix Hk is obtained as a by-product of the orthonormalization
performed by the Arnoldi iteration.

The recurrence relation constructing an orthogonal basis for Krylov subspaces is, in
general, a long recurrence relation. It requires all basis vectors to be saved in memory
and at each step the new vector must be orthogonalized to all of them. This could
become troublesome for very large matrices, especially when convergence is slow.
Biorthogonal bases provide the means to alleviate this drawback. These will lead to
short (three term) recurrence relations, which implies that a fixed number of basis
vectors are needed to expand Kk. There are however several complications in the use
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Algorithm 1 Arnoldi iteration [3]
1: Input: A ∈ Cm×m, v ∈ Cm, integer k < g
2: Output: Orthogonal Qk+1 ∈ Cm×k+1, Hessenberg matrix Hk ∈ C(k+1)×k such

that AQk = Qk+1Hk.
3: procedure Arnoldi_iteration(A, v, k)
4: q0 = v/‖v‖
5: for i = 1, 2, . . . , k do
6: qi = Aqi−1
7: for j = 1, 2, . . . , i do . Orthogonalization
8: hj,i = 〈qi, qj〉E
9: qi = qi − hj,iqj

10: end for
11: hi+1,i = ‖qi‖
12: qi = qi/hi+1,i . Normalization
13: end for
14: end procedure

of biorthogonal bases. These complications and the derivation of the short recurrence
relation is the topic of the next section.

3.4 Biorthogonal bases

Short recurrence relations generating bases for polynomial Krylov subspaces require
two bases: one forms a basis for a Krylov subspace generated with A ∈ Cm×m and the
other for a Krylov subspace generated with AH ∈ Cm×m. If these bases are orthogonal
with respect to each other, i.e., biorthogonal, then a pair of three term recurrence
relations suffices to construct them.
Formally, we have two Krylov subspaces Kk(A, v) and Kk(AH , w), where the matrices
are obviously related and the starting vectors satisfy 〈v, w〉E 6= 0. For these subspaces
two bases Vk,Wk ∈ Cm×k are constructed which are nested,

span{Vi} := span{v0, v1, . . . , vi−1} = Ki(A, v) and

span{Wi} := span{w0, w1, . . . , wi−1} = Ki(AH , w), for i = 1, . . . , k,

and satisfy the biorthonormality condition 〈vi, wj〉E = δij , in matrix notation

WH
k Vk = I.

The orthogonality can be expressed in terms of Krylov subspaces

vi ⊥ Ki(AH , w) and wi ⊥ Ki(A, v), i = 1, 2, . . . k − 1.
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Section 3.4.1 discusses breakdowns in the biorthogonalization of two sequences of
vectors. A pair of three term recurrence relations for bases of Krylov subspaces is
derived in Section 3.4.2, which can be equivalently represented by a tridiagonal matrix.
Tridiagonal matrices allow for a factorization resembling the core factorization, but
now using nonunitary triangular matrices, called eliminators, which are introduced in
Section 3.4.3. The non-Hermitian Lanczos iteration, which constructs biorthogonal
bases and the corresponding tridiagonal recurrence matrix is the topic of Section 3.4.4.

3.4.1 Breakdown

The situation for biorthogonalization procedures is more complicated than for
orthogonalization, due to the possibility of a serious breakdown. This term is introduced
below. Biorthonormal bases for two sequences of linearly independent vectors can be
constructed via the two-sided Gram-Schmidt procedure. This procedure is applied to
the columns of the Krylov matrices BVk and BWk related to Kk(A, v) and Kk(AH , w),
respectively,

BVk :=
[
v Av . . . Ak−1v

]
,

BWk :=
[
w AHw . . . (AH)k−1w

]
.

The resulting matrices Vk = BVk R
V
k and Wk = BWk RWk , with nonsingular upper

triangular matrices RVk , RWk , have biorthonormal columns, i.e., WH
k Vk = I. Two types

of breakdowns can occur while executing the two-sided Gram-Schmidt procedure. A
lucky breakdown signals the discovery of an invariant subspace and can now occur
for both spaces, Kk(A, v) and/or Kk(AH , w). A new type of breakdown, a serious
breakdown, is a breakdown where no invariant subspace is found.

Lucky breakdown

A lucky breakdown is good news since an invariant subspace has been found. Two
Krylov subspaces are used with respect to (possibly) distinct starting vectors v, w,
therefore both the grade gv of v with respect to A and the grade gw of w with respect
to AH must be taken into account. If any of the two sequences forms an invariant
subspace, i.e., k = min{gv, gw}, then the procedure breaks down.
Suppose, without loss of generality, that k = gv and gw > gv, then AKgv(A, v) =
Kgv (A, v) and vgv will vanish. This implies that 〈vgv , wgv 〉E = 0 and the normalization
cannot be achieved, thus the process breaks down. Example 3.4 illustrates such a
lucky breakdown.

Example 3.4. Consider A = diag(1, 2, 3, 4), v =
[
1, 1, 0, 0

]> and w =
[
1, 1, 1, 1

]>.
Clearly, gv = 2 and gw = 4. When generating the sequences of biorthogonal
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vectors for K(A, v) and K(AH , w) via the two-sided Gram-Schmidt procedure, without
normalization, we obtain:

{v0, v1, v2} =




1
1
0
0

 ,

−0.5
0.5
0
0

 ,


0
0
0
0




{w0, w1, w2} =




1
1
1
1

 ,

−0.5
0.5
1.5
2.5

 ,


0
0
2
6


 .

The vectors still satisfy v2 ⊥ span{w0, w1}, w2 ⊥ span{v0, v1}. However they do not
satisfy 〈v2, w2〉E 6= 0 and the process breaks down, we cannot generate an appropriate
w3.
In case of orthonormalization, the vectors would only differ by multiplicative scaling
until arriving at v2. Since v2 = 0, and therefore 〈v2, w2〉E = 0, the vectors v2 and w2
cannot be normalized.

Serious breakdown

If 〈vj , wj〉E = 0 for some j and vj 6= 0, wj 6= 0, then we have encountered a
serious breakdown. Serious because we have not found an invariant subspace, but the
biorthonormalization procedure breaks down. Such breakdowns can occur because
for vj 6= wj , the inner product 〈vj , wj〉E must not be positive. When vj = wj , then
〈vj , vj〉E ≥ 0, by the properties of an inner product, and positive for vj 6= 0. Further
remarks on breakdowns specific for the nonhermitian Lanczos iteration are provided
in Section 3.4.4.

3.4.2 Three term recurrence relation

A pair of three term recurrence relations suffices to generate the nested biorthogonal
bases Vk :=

[
v0 v1 . . . vk−1

]
and Wk :=

[
w0 w1 . . . wk−1

]
. The pair of short

recurrence relations imply more efficient procedures compared to the long recurrence
relation for constructing an orthogonal basis. A derivation of the recurrence relations
starting from the vectors in the sets {vi}, {wi} and using the property of the inner
product, 〈Ax, y〉E = 〈x,AHy〉E for any x, y ∈ Cm, is often used. In Lemma 3.8 a
derivation using matrix theory is provided, which leads to a shorter proof.

Lemma 3.8 (Biorthogonal Krylov bases recurrence relations). Let A ∈ Cm×m,
v, w ∈ Cm, with 〈v, w〉E 6= 0. Consider the Krylov subspaces Kk(A, v),Kk(AH , w),
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with k < min{gv, gw}. Then biorthonormal nested bases Vk,Wk ∈ Cm×k for these
subspaces satisfy the recurrence relations

AVk = VkTk + tk+1,kvke
>
k ,

AHWk = WkT
H
k + t̄k,k+1wke

>
k ,

where Tk ∈ Ck×k is a tridiagonal matrix.

Proof. Since the biorthonormality of the bases Vk,Wk with respect to the Euclidean
inner product implies WH

k Vk = I and vk ⊥ span{Wk}, wk ⊥ span{Vk}, we have

WH
k AVk = WH

k VkTk = Tk,

V Hk AHWk = V Hk WkT
H
k = THk .

The columns of Vk form a nested basis for Kk(A, v), so there exists a nonsingular
upper triangular matrix Rk such that Vk = BVk Rk, where BVk is the Krylov basis. By
substituting this into the Krylov recurrence relation, one easily finds that Tk must
be a upper Hessenberg matrix. A similar argument is valid for Wk and thus THk is
upper Hessenberg and therefore Tk is lower Hessenberg. Only a tridiagonal matrix is
simultaneously upper-and lower Hessenberg. Hence, Tk has tridiagonal structure.

This lemma shows that biorthonormalizing a pair of bases for Krylov subspaces
generated by A and AH leads to structure in both the upper-and lower triangular part
of the recurrence matrix Tk.
Next we provide a proof which uses the associated Gram matrix to relate the upper
and lower triangular part of Tk more explicitly to the lower triangular structure of
the recurrence matrices appearing in the Krylov recurrence relations for K(A, v) and
K(AH , w). This proof makes use of the recurrence relation with the inverse Hessenberg
matrix from Lemma 3.2. The idea of the alternative proof can be generalized to
biorthogonal bases for rational Krylov subspace, discussed in Chapter 4.

Proof: Alternative proof for Lemma 3.8. The proof is provided for the case k =
min{gv, gw}. Assume without loss of generality that k = gw ≤ gv. Consider orthogonal
bases QVk , QWk for Kk(A, v),Kk(AH , w) in the form given in Lemma 3.3 and Lemma
3.7, respectively:

AQVk = QVk H
V
k + hVk+1,kq

V
k+1e

>
k ,

AHQWk H
W
k = QWk + E.

Since k = gw, E = 0. Let Mk := (QWk )HQVk denote the associated Gram matrix and
assume that Mk is strongly nonsingular. Factorize Mk = LkRk, with Lk lower and
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Rk upper triangular. Form the new bases Vk := QVk R
−1, Wk := QWk L

−H . By Lemma
2.2 Vk,Wk form nested biorthonormal bases for Kk(A, v),Kk(AH , w), respectively.
Substitute this into the recurrence relations{

AQVk = QVk H
V
k + hVk+1,kq

V
k+1e

>
k

AHQWk H
W
k = QWk{

AVk = VkRkH
V
k R
−1
k + hVk+1,k

rk+1,k+1
qVk+1e

>
k

AHWkL
H
k H

W
k L−Hk = Wk{

WH
k AVk = RkH

V
k R
−1
k + hVk+1,k

rk+1,k+1
WH
k q

V
k+1e

>
k

WH
k AVk = Lk(HW

k )−HL−1
k

Set Tk := WH
k AVk, then.

Tk = = + 0

 = .

For k < min{gv, gw} a similar derivation can be followed, a rank argument on the
upper and lower triangular part of Tk then results in AVk = VkTk + tk+1,kvk+1e

>
k and

AHWk = WkT
H
k + t̄k,k+1wk+1e

>
k .

3.4.3 Eliminator factorization

A nonunitary analogue to the core factorization is based on eliminators. Eliminators are
essentially 2× 2 matrices of upper or lower triangular form. Definition 3.5 introduces
these eliminators together with a pictographical notation.
Definition 3.5 (Eliminators). An upper eliminator Eui ∈ Eui ⊂ Cm×m is an upper
triangular matrix of the form

Eui =


Ii−1

1 ×
1

Im−i−1

 → �b (3.11)

and a lower eliminator Eli ∈ Eli ⊂ Cm×m has lower triangular form

Eli =


Ii−1

1
× 1

Im−i−1

 → d� . (3.12)
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This definition of eliminators requires only one parameter, naturally the elements 1
can be replaced by parameters as well. That additional freedom might be useful in
developing numerical procedures, however, for theoretical purposes there is no harm
to fix them to 1. For clarity and ease of notation, we will do so. An obvious, but
important, property of lower (upper) eliminators is that multiplication only influences
one row or column and preserves upper (lower) rank structures. Example 3.5 illustrates
the effect of eliminators and shows how the notation is used.

Example 3.5. For some matrix A ∈ Cm×m, the rows altered by performing the
premultiplication El3El2M is and an example of postmultiplication is MEu2E

u
1

× × × ×
× × × ×
× × × ×
× × × ×

d
d

�
�

=
d�

× × × ×
× × × ×
⊗ ⊗ ⊗ ⊗
× × × ×

=

× × × ×
× × × ×
× × × ×
⊗ ⊗ ⊗ ⊗

× × × ×
× × × ×
× × × ×
× × × ×

�
�
b

b =
�b

× × ⊗ ×
× × ⊗ ×
× × ⊗ ×
× × ⊗ ×

=

× ⊗ × ×
× ⊗ × ×
× ⊗ × ×
× ⊗ × ×

Lemma 3.9 states that a strongly nonsingular tridiagonal matrix can be decomposed
using these eliminators. The eliminator factorization is, in fact, a particular LR
factorization, where L and R are represented as a product of eliminators.

Lemma 3.9 (Eliminator factorization of tridiagonal matrix). Let T ∈ Cm×m
be a strongly nonsingular tridiagonal matrix. Then T can be factorized as T =(∏m−1

i=1 Eli

)
D
(∏1

i=m−1E
u
i

)
, where D is a diagonal matrix.
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Proof. Consider T ∈ C3×3 and set t̃22 := t22 − t21t12
t11

, then the factorization ist11 t12
t21 t22 t23

t32 t33

 =

 1
t21
t11

1
1

t11
t̃22 t23
t32 t33

1 t12
t11
1

1



= d�
1

1
t32
t̃22

1

t11
t̃22

t̃33

1
1 t23

t̃22
1

 �b

= d�
d�

t11
t̃22

t̃33

 �
�
b

b
,

where t̃33 := t33 − t32t23
t̃22

. Already factorized principal leading submatrices are not
affected by later eliminators. Hence, this process is immediately valid for tridiagonal
matrices of arbitrary size. The diagonal terms t̃i,i can never vanish, which corresponds
to T being strongly nonsingular. The strongly nonsingular requirement follows from
the fact that the eliminator factorization is an LR factorization.

If the tridiagonal matrix is not strongly nonsingular, then Lemma 3.9 holds until the
first singular principal leading submatrix is reached. Just as for the core factorization,
the eliminator factorization can be used to study the structure of matrices.

3.4.4 Nonhermitian Lanczos iteration

Lanczos [121] proposed two iterations to compute eigenvalues (which he called latent
roots) of matrices. An iteration for non-Hermitian matrices, which is discussed at
present and an iteration for Hermitian matrices, which is discussed in Section 3.5.
The Lanczos iteration is an instance of the two-sided Gram-Schmidt procedure applied
to two (nested) sets of linearly independent vectors in the Krylov subspaces K(A, v) and
K(AH , w). These particular choices of Krylov subspaces, i.e., generated with A and AH ,
lead to short recurrence relations, as is shown in Section 3.4.2. Since we are generating
spaces there is flexibility to choose a candidate vector for expansion, i.e., suitable vectors
v̂, ŵ such that Kk+1(A, v) = Kk(A, v) ∪ {v̂} and Kk+1(AH , w) = Kk(AH , w) ∪ {ŵ}.
Similarly to the Arnoldi iteration these candidate vectors will be represented as
v̂ = AVkt

V
k and ŵ = AHWkt

W
k , where Vk,Wk is a pair of biorthonormal bases for

Kk(A, v) and Kk(AH , w), respectively. The continuation vectors are chosen to be
tVk = tWk = ek and the resulting algorithm is provided in Algorithm 2.
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Algorithm 2 Lanczos iteration [121,148]
1: Input: A ∈ Cm×m, v, w ∈ Cm, integer k < min{gv, gw}
2: Output: Biorthogonal Wk+1, Vk+1 ∈ Cm×k+1, tridiagonal matrix T k ∈ C(k+1)×k

such that WH
k AVk = Tk.

3: procedure Lanczos_iteration(A, v, w, k)
4: η := 〈v, w〉E
5: v0 := v/|η|1/2 & w0 := w/(η/|η|1/2)
6: v−1 := 0 & w−1 := 0
7: for i = 1, 2, . . . , k do
8: ti,i := 〈Avi−1, wi−1〉E
9: v̂i := Avi−1 − ti,ivi−1 − ti−1,ivi−2

10: ŵi := AHwi−1t̄i,iwi−1 − ti,i−1wi−2
11: ti+1,i := |〈v̂i, ŵi〉E |1/2
12: ti,i+1 := 〈v̂i, ŵi〉E/ti+1,i
13: vi := v̂i/ti+1,i
14: wi := ŵi/t̄i,i+1
15: end for
16: end procedure

Note that the normalization, Step 11 and Step 12 in Algorithm 2, can be done in any
way as long as ti+1,iti,i+1 = 〈v̂i, ŵi〉E .

Breakdowns and look ahead

Serious breakdowns in the non-Hermitian Lanczos procedure are well studied and
we refer to the literature for the consequences of serious breakdowns and possible
remedies [97]. Serious breakdowns in the Lanczos iteration can be classified as curable
or incurable serious breakdowns. A curable breakdown can be resolved by using a look
ahead procedure to ’jump over’ the vectors that have 〈vj , wj〉E = 0. An incurable
breakdown is a serious breakdown that cannot be cured. At the occurrence of an
incurable breakdown, the eigenvalues of the generated tridiagonal recurrence matrix
are exact eigenvalues of the matrix A.
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3.5 Special cases

Two important special cases occur when the matrix A ∈ Cm×m is unitary AHA = I or
Hermitian AH = A. For a unitary matrix the isometric Arnoldi iteration [100,155,188]
is developed, which we will not discuss in detail.
For Hermitian matrices the Arnoldi and Lanczos iteration reduce to the same iteration,
the Hermitian Lanczos iteration. This implies a three term recurrence relation which
generates an orthogonal basis. So it is as efficient as the biorthogonal procedure
while still providing an orthogonal result, and thus is inherently more stable than a
biorthogonal result. First we show that an orthonormal basis for K(A, v), with A = AH ,
satisfies a three term recurrence relation and second the equivalent statement that a
pair of biorthonormal bases for K(A, v) and K(AH , w) reduces to a single orthonormal
basis if AH = A and v = w. The resulting recurrence matrix is a Hermitian tridiagonal
matrix and this is reflected in its eliminator factorization. Then the Hermitian Lanczos
iteration is provided in its most used form, the form introduced by Paige [132].

Three term recurrence relation

Lemma 3.10 states that for Hermitian matrices AH = A there exists a three term
recurrence relation that generates an orthonormal basis for K(A, v). Two proofs
are provided. The first starts from an orthonormal basis and shows that the
Hessenberg matrix reduces to a Hermitian tridiagonal matrix. The second starts
from biorthonormal bases and shows that the pair of three term recurrence relations
reduces to a single three term recurrence relation. The second proof uses the same
idea as a proof that will be used in the next chapter to show that for rational Krylov
subspaces and a Hermitian matrix there also exist short recurrence relations for an
orthonormal basis.
Lemma 3.10 (Short orthogonal Krylov basis recurrence relation). Let A ∈ Cm×m be
Hermitian, i.e., AH = A and v ∈ Cm. Consider Kk(A, v), with k < g. Then a nested
orthonormal basis Qk ∈ Cm×k for K(A, v) satisfies the relation

AQk = QkTk + tk+1,kqke
>
k ,

where Tk ∈ Ck×k is a Hermitian tridiagonal matrix and qk ∈ Kk+1(A, v), qk ⊥ KkA, v,
‖qk‖ = 1.

Proof. Use the recurrence relation, AQk = QkHk + hk+1,kqke
>
k , from Lemma 3.3, and

using AH = A and QHk qk = 0, premultiplication with QHk results in

QHk AQk = Hk = (QHk AQk)H = HH
k .

Hence the Hessenberg matrix Hk must be Hermitian, making it a tridiagonal matrix
Tk.
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Alternative proof. Start from the pair of recurrence relations from Lemma 3.8 and
show that it reduces to a single recurrence relation when v = w. Since Kk(AH , w) =
Kk(A, v), the biorthonormal bases Vk,Wk now span the same space, for any k. By
induction it can be shown that Vk = Wk for any k, since the basisvectors vi, wi ∈
Ki+1(A, v) are uniquely determined by the orthogonality conditions vi, wi ⊥ Ki(A, v)
and normalization. Thus, by using the appropriate normalization, Wk = Vk and

AHWk = WkT
H
k + t̄k,k+1wk+1e

>
k

⇔AVk = VkT
H
k + t̄k,k+1vk+1e

>
k = VkTk + tk+1,kvk+1e

>
k

and thus the tridiagonal matrix Tk is Hermitian and generates a single orthogonal
nested basis Vk.

The off-diagonal elements of Tk can be chosen to be positive and then it is called a
Jacobi matrix. The Hermitian Lanczos iteration is well studied [130, 132] and the
properties of the resulting recurrence matrix, the Jacobi matrix are also extensively
studied. Therefore we will not discuss this method further.

Eliminator factorization

The eliminator factorization of a Hermitian tridiagonal matrix is discussed in Lemma
3.11. This is related to the reduction of the LR factorization to Cholesky factorization
for Hermitian positive definite matrices.

Lemma 3.11 (Eliminator factorization of tridiagonal matrix). Let T ∈ Ck×k be
a strongly nonsingular Hermitian tridiagonal matrix. Then T can be factorized as
T = RHDR, where R =

(∏1
i=k−1E

u
i

)
is upper triangular and D a real diagonal

matrix.

Proof. Lemma 3.9 states that the decomposition T = LDR exists, where R =(∏1
i=k−1E

u
i

)
and L =

(∏k−1
i=1 E

l
i

)
are unit upper and lower triangular. From TH = T

we have RHDHLH = LDR and from the uniqueness of the LDR factorization L = RH

and D = DH ∈ Rk×k.

Hermitian Lanczos iteration

The implementation of the Hermitian Lanczos iteration that is most often used,
introduced and analyzed by Paige [132], is given in Algorithm 3.



48 STRUCTURED MATRICES IN POLYNOMIAL KRYLOV SUBSPACES

Algorithm 3 Hermitian Lanczos iteration [132]
1: Input: A ∈ Cm×m, AH = A, v ∈ Cm, integer k < g
2: Output: Orthogonal Qk+1 ∈ Cm×k+1, tridiagonal matrix T k ∈ C(k+1)×k such

that AQk = Qk+1T k.
3: procedure Arnoldi_iteration(A, v, k)
4: q0 := v/‖v‖
5: t1,1 := qH0 Aq0
6: q̃1 := Aq0 − t1,1q0
7: for i = 1, 2, . . . , k do
8: ti,i−1 := ‖q̃i‖2, ti−1,i := t̄i,i−1
9: qi = q̃i/ti,i−1

10: ui = Aqi − ti,i−1qi−1
11: ti,i = qHi ui
12: q̃i+1 = ui − ti,iqi
13: end for
14: end procedure

For a full discussion on this implementation and its finite precision behavior we refer
to the dissertation of Paige [132] and for a recent survey to the book by Meurant [130].

3.6 Conclusion

Three types of bases for polynomial Krylov subspaces and their recurrence relations
are discussed. The Krylov basis is easy to study thanks to its simple structure and
provides clear conditions for breakdowns in terms of the rank of certain matrices.
However due to ill-conditioning this basis is unsuited for numerical computations.
The orthogonal basis is expected to deliver the most numerically stable results and
is characterized by a Hessenberg recurrence matrix, i.e., a long recurrence relation.
To alleviate the high cost associated with the long recurrence relation, biorthogonal
bases can be used. Biorthogonal bases, for a specific pair of Krylov subspaces, lead to
a pair of three term recurrence relations. These do not possess the inherent stability
of orthogonal bases. This should be taken into account when developing biorthogonal
procedures.



Chapter 4

Structured matrices in rational
Krylov subspaces

Polynomial Krylov subspaces provide subspaces which contain mainly information
related to the best separated eigenvalues, typically the extreme eigenvalues. For more
precise statements on convergence of Krylov subspace methods, there are results for
solving linear systems for non-Hermitian matrices [125] and based on potential theory
for Hermitian matrices [120] and unitary matrices [100]. To obtain subspaces which
represent other, chosen eigenvalues several generalizations have been introduced:

• polynomial Krylov subspaces generated with a shift-invert version of the matrix
A with shift s ∈ C, will generate a space representing the dominant eigenvalues
of (A− sI)−1 well. That is, those eigenvalues close to the shift s.

• rational Krylov subspaces, which generalize the previous idea further, by allowing
the shift s to change for every new vector added to the subspace being constructed.

Ruhe [143] introduced rational Krylov subspaces together with an Arnoldi-type
iteration to construct an orthogonal basis for these subspaces. Ruhe argued that, apart
from polynomials, rational functions with prescribed poles are a suitable candidate for
numerical computation thanks to the simplicity and efficiency with which they can be
manipulated.
Rational Krylov subspaces are introduced in Section 4.1 and we comment on some
different conventions used in the literature. Polynomial Krylov subspaces can be
regarded as a special case of rational Krylov subspaces, so why do we study them
separately? First, polynomial Krylov subspaces have an intimate connection to
orthogonal polynomials [43, 157], whereas rational Krylov subspaces are connected

49
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to orthogonal rational functions. Second, because of the nature of a rational Krylov
subspace, systems of equations have to be solved. Hence, they are not suited for
solving systems of equations, which is an important application of polynomial Krylov
subspaces (e.g., GMRES [149], CG [102], BiCGSTAB [168]). With inexact solves for
the shift-inversion, rational Krylov subspaces can be used to solve systems of equations.
An equivalent interpretation is to view them as a preconditioned polynomial Krylov
method where the preconditioner is allowed to change at each iteration, in literature
referred to as flexible GMRES [147]. For rational Krylov subspaces three types of
bases and their corresponding recurrence relations are discussed.
Krylov bases are discussed in Section 4.2, which are a useful theoretical tool, but fail
to guarantee a practical basis for numerical computation. The analysis of Krylov bases
provides insight into breakdowns and rank structures appearing in the recurrence
matrix, the matrix containing the recurrence coefficients, and the Gram matrix
associated with rational Krylov subspaces. For practical computation orthogonal
bases are preferred, where the rational Arnoldi iteration [143] is the method of choice
to generate them. Section 4.3 discusses these orthogonal bases and their relation
to Krylov bases. For rational Krylov subspaces generated with nonnormal matrices
the orthogonal bases must be generated with a long recurrence relation. To obtain
short recurrence relations we consider biorthogonal bases in Section 4.4. All possible
representations of the recurrence relations for biorthogonal bases are derived from
the recurrence matrices appearing for orthogonal bases. This derivation is based on
the factorization of the associated Gram matrix. Instead of using a single matrix
to represent the recurrence relation, a matrix pencil can be used. Matrix pencils
representing recurrence coefficients are the natural object to study short recurrence
relations for rational Krylov subspaces. In particular, a tridiagonal pencil is derived
for rational Krylov subspaces. This is a novel result. Section 4.5 identifies special
cases appearing in the literature of these results on matrix and pencil structures in
biorthogonal rational Krylov bases.
The main results presented in this chapter are published in [165].
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4.1 Rational Krylov subspaces

Rational Krylov subspaces are introduced in Definition 4.1. They are constructed by
multiplication by A and/or shift inverted versions of A, i.e., (A− ξiI)−1. The shifts
do not have to be known a priori, only at the introduction of a new vector to the
subspace.

Definition 4.1 (Rational Krylov subspace: practical form). Let A ∈ Cm×m, v ∈ Cm
and Ξ = {ξi}ki=1, with ξi ∈ C. A rational Krylov subspace with poles ξi = νi

µi
, shifts

ηi
ρi
∈ C and continuation vectors ti ∈ Ki(A, v; Ξ) is defined as

Kk(A, v; Ξ) := span
{
v,
ρ1A− η1I

µ1A− ν1I
t1,

ρ2A− η2I

µ2A− ν2I
t2, . . . ,

ρk−1A− ηk−1I

µk−1A− νk−1I
tk−1

}
.

The parameters ρi, ηi, µi, νi must satisfy ηi
ρi
6= νi

µi
, ρi, µi 6= 0 and the continuation

vectors ti ∈ Ki(A, v; Ξ), i = 0, 1, . . . , k−1, must be chosen such that dim(Kk(A, v; Ξ)) =
k for all k ≤ g, where g denotes the grade of v with respect to A. Definition 4.1 allows
us to deal with finite and infinite poles simultaneously, for an infinite pole the choice
ρk 6= 0 and µk = 0 is appropriate.
Intuitively, in eigenvalue computation, the pole ξi = νi

µi
increases the contribution of

eigenvalues near ξi, while the shift ηi
ρi

suppresses the contribution near this quantity.
Moreover there is flexibility in the choice of the continuation vector ti and the choice
of the shift, determined by ηi, ρi. Lemma 4.1 states several properties of rational
Krylov subspaces.

Lemma 4.1 (Properties of rational Krylov subspaces [98]). For a rational Krylov

subspace Kk(A, v; Ξ) and the polynomial πk−1(z) :=
k−1∏

i=1,ξi 6=∞
(µiz−νi) of degree ≤ k−1,

with ξi = νi
µi

the following statements hold

• Kk(A, v; Ξ) = Kk(A, π−1
k−1(A)v)

• v ∈ Kk(A, v; Ξ)

• dim(Kk(A, v; Ξ)) = min{k, g}, where g is the usual grade of v with respect to A

• the spaces Kk(A, v; Ξ) and Pk−1/πk−1 are isomorph, where Pk−1/πk−1 =
span{1/πk−1(z), z/πk−1(z), . . . , zk−1/πk−1(z)}.

Since the representation in Definition 4.1 complicates notation tremendously and we
are foremost interested in theoretical properties, we will mostly use the form introduced
in Definition 4.2. The only parameters are the poles ξi, and ξi =∞ is dealt with by
using a selection vector to keep track of finite and infinite poles.
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Definition 4.2 (Rational Krylov subspace (RKS)). Let A ∈ Cm×m, v ∈ Cm and
Ξ = {ξi}k−1

i=1 , with ξi ∈ C. Consider a selection vector s indicating when a pole is

finite or infinite, si :=
{

1 if ξi =∞
0 else

, and indices k+
i :=

∑i
j=1 sj, k

−
i := i − k+

i .

The corresponding rational Krylov subspace is

Kk(A, v; Ξ) = span{v, ψ1(A)v, ψ2(A)v, . . . , ψk−1(A)v} (4.1)

where ψi(z) :=
{
zk

+
i if si = 1

φk−(z) = (z − ξi)−1φk−−1(z) else
and φ0(z) := 1.

The selection vector still complicates the notation, but it is required in some statements
in this section. Some results will be stated only for finite poles, the omission of infinite
poles avoids complicated expressions that are merely a form of bookkeeping. Examples
will then be provided which show that the inclusion of infinite poles does not change
anything essential.
To illustrate the rational Krylov subspaces in the form proposed by Definition 4.2, two
examples, Example 4.1 and Example 4.2, are provided.

Example 4.1. Let Ξ = {ξ1, ξ2, ξ3,∞, ξ5, ξ6}. Then the bookkeeping is given in Table
4.1.

i 1 2 3 4 5 6
si 0 0 0 1 0 0
k+
i 0 0 0 1 1 1
k−i 1 2 3 3 4 5

Table 4.1: Bookkeeping for a rational Krylov subspace.

The corresponding RKS is

K7(A, v) = span{v, φ1(A)v, φ2(A)v, φ3(A)v,Av, φ4(A)v, φ5(A)v},

where

φ1(z) = (z − ξ1)−1,

φ2(z) = (z − ξ2)−1(z − ξ1)−1,

φ3(z) = (z − ξ3)−1(z − ξ2)−1(z − ξ1)−1,

φ4(z) = (z − ξ5)−1(z − ξ3)−1(z − ξ2)−1(z − ξ1)−1,

φ5(z) = (z − ξ6)−1(z − ξ5)−1(z − ξ3)−1(z − ξ2)−1(z − ξ1)−1.
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Example 4.2. Let Ξ = {∞, ξ2, ξ3,∞,∞,∞}. Then the bookkeeping is given in Table
4.2.

i 1 2 3 4 5 6
si 1 0 0 1 1 1
k+
i 1 1 1 2 3 4
k−i 0 1 2 2 2 2

Table 4.2: Bookkeeping for a rational Krylov subspace.

The corresponding RKS is

K7(A, v) = span{v,Av, φ1(A)v, φ2(A)v,A2v,A3v,A4v},

where

φ1(z) = (z − ξ2)−1,

φ2(z) = (z − ξ3)−1(z − ξ2)−1.

In order to be able to compute with these rational Krylov subspaces a basis is required.
The following three sections describe possible bases to use: the Krylov basis, an
orthogonal basis and biorthogonal bases.

4.2 Rational Krylov basis

The (rational) Krylov basis {v, ψ1(A)v, . . . , ψk−1(A)v} associated with a rational
Krylov subspace Kk(A, v; Ξ) forms the rational Krylov matrix

BΞ
k :=

[
v, ψ1(A)v, ψ2(A)v, . . . , ψk−1(A)v

]
. (4.2)

Theorem 4.1 provides an expression for the rank of BΞ
k in terms of the grade g of v

with respect to A. The proof of the following theorem is made analogously to the proof
of Theorem 3.1 for the polynomial case without explicitly relying on the connection
between polynomial and rational Krylov subspaces. Fasino [63] provided this proof
for a normal matrix A and square rational Krylov matrices where only finite poles
are allowed. Here, the result is given for a diagonalizable matrix A and rectangular
rational Krylov matrices, allowing any pole in C. The key idea in the proof is to
extract a Vandermonde matrix, two illustrative examples of this procedure are given
in Example 4.3 and Example 4.4.
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Theorem 4.1 (Rank of a rational Krylov matrix). Let v ∈ Cm and A ∈ Cm×m be a
diagonalizable matrix, i.e., A = XΛX−1, where Λ = diag(λ1, . . . , λm) exists. Consider
Kk(A, v; Ξ), with a given set of poles Ξ = {ξi}k−1

i=1 , ξi ∈ C, and corresponding rational
Krylov matrix BΞ

k ∈ Cm×k. Then rank(BΞ
k ) = min{k, g}, with g the grade of v with

respect to A. Moreover g ≤ min{c, d} for c the number of nonzero elements in X−1v
and d the number of distinct eigenvalues.

Proof. A Vandermonde matrix is present in the rational Krylov matrix, as in the
polynomial case, however it takes some effort to reveal it. First a preliminary
decomposition isolating the rational functions ψi(z)

BΞ
k =

 | | |
v ψ1(A)v . . . ψk−1(A)v
| | |



=

 | | |
XX−1v ψ1(XΛX−1)v . . . ψk−1(XΛX−1)v
| | |



= X

 | | |
X−1v ψ1(Λ)X−1v . . . ψk−1(Λ)X−1v
| | |


Set wi := (X−1v)ei

= X

w1
. . .

wm


︸ ︷︷ ︸

=:W

1 ψ1(λ1) . . . ψk−1(λ1)
...

...
1 ψ1(λm) . . . ψk−1(λm)


︸ ︷︷ ︸

=:F

.

Now we focus on the matrix F , which hides a Vandermonde matrix. Construct a
permutation matrix P that orders the rational functions in F by decreasing degree,
i.e. [

1 ψ1(z) . . . ψk−1(z)
]
P =

[
ψ̃k−1(z) ψ̃k−2(z) . . . ψ̃0(z)

]
with deg(ψ̃i) > deg(ψ̃i−1). The degree of a rational function is taken to be the degree
of the numerator minus the degree of the denominator. The matrix P is unique.

Set πi(z) =
∏k
l=i+1(z − ξ̂l), with

{
ξ̂i = ξi, if ξi 6=∞
ξ̂i = 0, if ξi =∞

. For the products

πi(z)φk−(z), i = 0, 1, . . . , k− 1, there exists a unit lower triangular matrix L such that[
ψ̃k−1(z) . . . ψ̃0(z)

]
=
[
π0(z)φk−(z) . . . πk−1(z)φk−(z)

]
L.
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This allows the extraction of the common term φk−(z)[
π0(z)φk−(z) . . . πk−1(z)φk−(z)

]
= φk−(z)

[
π0(z) π1(z) . . . πk−1(z)

]
.

The monic polynomials πi(z) have exact degree deg(πi) = k − i − 1. Hence, there
exists a unit lower triangular matrix L̂ such that[

π0(z) π1(z) . . . πk−1(z)
]

=
[
zk−1 . . . z 1

]
L̂.

To summarize, in matrix notation:

F = FPP>

=

 ψ̃k−1(λ1) . . . ψ̃1(λ1) ψ̃0(λ1)
...

...
...

ψ̃k−1(λm) . . . ψ̃1(λm) ψ̃0(λm)

P>

=

φk−(λ1)
. . .

φk−(λm)


︸ ︷︷ ︸

=:Φ

π0(λ1) . . . πk−2(λ1) πk−1(λ1)
...

...
...

π0(λm) . . . πk−2(λm) πk−1(λm)

LP>

= Φ

λ
k−1
1 . . . λ1 1
...

...
...

λk−1
m . . . λm 1


︸ ︷︷ ︸

=:V

L̂LP>

By construction the matrix Φ is nonsingular (poles cannot coincide with eigenvalues),
permutation matrices are nonsingular and the product L̂L is unit lower triangular
and thus, nonsingular. Hence, rank(F ) = rank(V ). Then rank(BΞ

k ) = rank(XWF ) =
rank(WF ) = rank(WV ).

The relation between Vandermonde and (rational) Krylov matrices allows to relate their
respective condition numbers [11]. In Chapter 5 the relationship between a rational
Krylov matrix and a Vandermonde matrix will be used to study its displacement rank
and that of the related Gram matrix.

Example 4.3. Denote by ξi finite poles and let Ξ = {∞, ξ2, ξ3,∞}. The RKS is

K5(A, v; Ξ) = span{v, ψ1(A)v, ψ2(A)v, ψ3(A)v, ψ4(A)v}

= span{v,Av, φ1(A)v, φ2(A)v,A2v},
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where

φ1(z) = (z − ξ2)−1,

φ2(z) = (z − ξ3)−1(z − ξ2)−1.

With the corresponding

F =

1 ψ1(λ1) . . . ψ4(λ1)
...

...
...

1 ψ1(λm) . . . ψ4(λm)

 =

1 λ1 φ1(λ1) φ2(λ1) λ2
1

...
...

...
...

...
1 λm φ1(λm) φ2(λm) λ2

m

 .
Table 4.3 shows the parameters keeping track of positive and negative powers.

i 1 2 3 4
si 1 0 0 1
k+
i 1 1 1 2
k−i 0 1 2 2

Table 4.3: Bookkeeping for a rational Krylov subspace.

The polynomials πi(z) =
∏k
l=i+1(z − ξ̂l) and the products, denoted by ψ̃i, allow the

extraction of the common factor φ2(z) are

π0(z) = z(z − ξ2)(z − ξ3)z, ψ̃4 := π0(z)φ2(z) = z2,

π1(z) = (z − ξ2)(z − ξ3)z, ψ̃3 := π1(z)φ2(z) = z,

π2(z) = (z − ξ3)z, ψ̃2 := π2(z)φ2(z) = z

z − ξ2
,

π3(z) = z, ψ̃1 := π3(z)φ2(z) = z

(z − ξ3)(z − ξ2) ,

π4(z) = 1, ψ̃0 := π4(z)φ2(z) = 1
(z − ξ3)(z − ξ2) .

First a reordering by degree is performed using the permutation matrix P

FP = F


0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 =
[
z2 z 1 φ1(z) φ2(z)

]



RATIONAL KRYLOV BASIS 57

Clearly a lower triangular L can be found such that FP = Ψ̃L, with Ψ̃ =[
ψ̃4 ψ̃3 . . . ψ̃0

]
,

FP =
[
z2 z z

z−ξ2
z

(z−ξ3)(z−ξ2)
1

(z−ξ3)(z−ξ2)

]


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −ξ2 1 0
0 0 ξ3ξ2 −ξ3 1


︸ ︷︷ ︸

=:L

.

Since πi(z) is a monic polynomial of exact degree i it allows a representation in the
monomial basis

[
π0 π1 . . . π4

]
=
[
z4 . . . z 1

]


1
−ξ3 − ξ2 1
ξ3ξ2 −ξ3 − ξ2 1

ξ3ξ2 −ξ3 1
1


︸ ︷︷ ︸

=:L̂

.

Hence,

F = FPP> =

φ2(λ1)
. . .

φ2(λm)


λ

4
1 . . . λ1 1
...

...
...

λ4
1 . . . λm 1

 L̂LP>.
Example 4.4. Denote by ξi finite poles and let Ξ = {ξ1, ξ2, ξ3,∞, ξ5, ξ6}. The RKS
is

K7(A, v; Ξ) = span{v, φ1(A)v, φ2(A)v, φ3(A)v,Av, φ4(A)v, φ5(A)v},

where

φ1(z) = (z − ξ1)−1,

φ2(z) = (z − ξ2)−1(z − ξ1)−1,

φ3(z) = (z − ξ3)−1(z − ξ2)−1(z − ξ1)−1,

φ4(z) = (z − ξ5)−1(z − ξ3)−1(z − ξ2)−1(z − ξ1)−1,

φ5(z) = (z − ξ6)−1(z − ξ5)−1(z − ξ3)−1(z − ξ2)−1(z − ξ1)−1.

The corresponding parameters are shown in Table 4.4.
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i 1 2 3 4 5 6
si 0 0 0 1 0 0
k+
i 0 0 0 1 0 0
k−i 1 2 3 3 4 5

Table 4.4: Bookkeeping for a rational Krylov subspace.

Using πi(z) we can extract the common factor φ5(z)

π0(z) = (z − ξ6)(z − ξ5)z(z − ξ3)(z − ξ2)(z − ξ1), ψ̃6 := π0(z)φ5(z) = z,

π1(z) = (z − ξ6)(z − ξ5)z(z − ξ3)(z − ξ2), ψ̃5 := π1(z)φ5(z) = z

z − ξ1
,

π2(z) = (z − ξ6)(z − ξ5)z(z − ξ3), ψ̃4 := π2(z)φ5(z) = z

(z − ξ2)(z − ξ1) ,

π3(z) = (z − ξ6)(z − ξ5)z, ψ̃3 := π3(z)φ5(z) = z

(z − ξ3)(z − ξ2)(z − ξ1) ,

π4(z) = (z − ξ6)(z − ξ5), ψ̃2 := π4(z)φ5(z) = 1
(z − ξ3)(z − ξ2)(z − ξ1)

π5(z) = z − ξ6, ψ̃1 := π5(z)φ5(z) = 1
(z − ξ5)(z − ξ3)(z − ξ2)(z − ξ1)

π6(z) = 1, ψ̃0 := π6(z)φ5(z) = 1
(z − ξ6)(z − ξ5)(z − ξ3)(z − ξ2)(z − ξ1) .

Then for

P =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and L =



1
1
−ξ1 1
ξ2ξ1 −ξ2 1
−ξ3ξ2ξ1 ξ3ξ2 −ξ3 1

1
1


we have

FP =
[
ψ̃6(z) ψ̃5(z) . . . ψ̃0(z)

]
L.
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Then, let column i of L̂, l̂i, be the representation of π6−i(z) in the monomial basis,
i.e., π6−i(z) =

[
1 z . . . z6] l̂i and we obtain

F =

φ5(λ1)
. . .

φ5(λm)


λ

6
1 . . . λ1 1
...

...
...

λ6
m . . . λm 1

 L̂LP>.

4.2.1 Recurrence relations

The rational Krylov matrix BΞ
k satisfies a recurrence relation. This relation can be

described by a recurrence matrix or it can be represented as a recurrence pencil. A
recurrence pencil is a pair of matrices which contain recurrence coefficients, so a
generalization of a matrix to a pencil in the usual sense. Matrix pencils are not unique,
therefore several different representations exist. Three representations are important in
this manuscript: a Hessenberg pencil provides an elegant and intuitive representation,
a single recurrence matrix follows from projection onto the Krylov subspace and an
inverse Hessenberg pencil is useful for the analysis of structures of recurrence pencils
of biorthogonal bases.
Only the Hessenberg pencil is discussed in detail, its derivation is natural in the Krylov
basis. The single recurrence matrix and inverse Hessenberg pencil are more tedious to
derive. Their discussion is postponed to Section 4.3 on orthogonal bases, where the
core factorization allows elegant characterization and definition.

Hessenberg pencil

A structural constraint is set on the recurrence pencil. The structure of the matrices
appearing in the recurrence pencil must both adhere to Hessenberg structure, i.e.,
they must form a Hessenberg pencil. Then the poles of the related RKS can be easily
retrieved from this representation. Lemma 4.2 elaborates on this representation for
finite poles. For brevity the infinite poles are excluded, including infinite poles is not
a problem but it requires a lot of bookkeeping. Example 4.5 provides an example with
both finite and infinite poles.

Lemma 4.2 (Rational Krylov recurrence relation: Hessenberg pencil). Let BΞ
k+1 ∈

Cm×(k+1), k < g, be the rational Krylov matrix corresponding to Kk+1(A, v; Ξ) and
poles satisfying ξi ∈ C\σ(A) for all i. Then BΞ

k+1 satisfies the following recurrence
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relation for the Hessenberg pencil (Ck, F k) ∈ C(k+1)×k × C(k+1)×k

ABΞ
k Fk +Abke

>
k = BΞ

kCk + bke
>
k

ABΞ
k+1F k = BΞ

k+1Ck

ABΞ
k+1



0
1 0

1 . . .
. . . 0

1

 = BΞ
k+1



1
ξ1 1

ξ2
. . .
. . . 1

ξk

 ,

and, clearly, Ck = I + F k

ξ1 . . .
ξk

.
Proof. For only finite poles the rational Krylov matrix is given by BΞ

k+1 =[
v φ1(A)v . . . φk−1(A)v φk(A)v

]
. The statement follows immediately from the

equality zφi(z) = φi−1(z) + ξiφi(z).

Example 4.5 illustrates that including infinite poles will not change anything essential
to the statement of Lemma 4.2. That is, the matrices have Hessenberg structure and
the ratios of the subdiagonal elements reveal the poles. In the context of poles, if
α 6= 0 then α

0 =∞, i.e., an infinite poles.
Example 4.5. K(A, v; {ξ1, ξ2, ξ3,∞, ξ5, ξ6}) and the corresponding Krylov basis B7 =[
v φ1(A)v φ2(A)v φ3(A)v Av φ4(A)v φ5(A)v

]

AB7



0 1
1 0

1 0
1 0

0 0
1 0

1


= B7



1
ξ1 1

ξ2 1
ξ3 0 1

1 0
ξ4 1

ξ5


.

Subdiagonal ratios are { ξ11 ,
ξ2
1 ,

ξ3
1 ,

1
0 ,

ξ4
1 ,

ξ5
1 }.

By including infinite poles the elegant connection between Ck and F k has, however,
been lost for some part. A connection can be obtained by changing I by a permutation
matrix of Hessenberg form, but this is not explored further.
Corollary 4.1. If ξk =∞, then the recurrence relation ABΞ

k Fk +Abke
>
k = BΞ

kCk +
ξkbke

>
k from Lemma 4.2 becomes ABΞ

k Fk = BΞ
kCk + bke

>
k .
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Rational Hessenberg matrix

A single matrix representation, corresponding to the Krylov subspace from Example
4.5, is provided in Example 4.6.

Example 4.6. Consider K(A, v; Ξ), with Ξ̂ = {ξ1, ξ2, ξ3,∞, ξ5, ξ6}, and its Krylov
basis BΞ̂

7 =
[
v φ1(A)v φ2(A)v φ3(A)v Av φ4(A)v φ5(A)v

]
. Then the

selection vector s = {0, 0, 0, 1, 0, 0} and

ABΞ̂
7 I = BΞ̂

7 Z

ABΞ̂
7 = BΞ̂

7



0 1 0
ξ1 1 0

ξ2 1 0
ξ3 0 1

1 0 0 0 0 0
0 ξ5 1
0 ξ6


.

Clearly, the selection vector, i.e., occurrences of ξi =∞, determines the lower triangular
structure.

The resulting matrix is a rational Hessenberg matrix. In Section 4.3.4 an elegant
derivation of this structure will be provided starting from the core factorization of
the Hessenberg pencil. The discussion on core factorization is postponed, since the
representation in an orthogonal basis provides a more natural starting point.

4.3 Orthogonal basis

Three types of recurrence relations for an orthogonal basis for a RKS are discussed.
The analysis of the structure of the associated recurrence matrices or recurrence pencils
relies on manipulating their core factorization. Ruhe [143] introduced rational Krylov
subspaces and a corresponding Arnoldi-type iteration [144] to generate an orthogonal
basis. This Arnoldi-type iteration is commonly referred to as the rational Arnoldi
iteration and uses a Hessenberg pencil to represent the recurrence relation. Section
4.3.1 derives this Hessenberg recurrence pencil. Afterwards the core factorization of
Hessenberg pencils is elaborated upon in Section 4.3.2. The core factorization allows
for the derivation of another recurrence pencil, an inverse Hessenberg pencil, which is
the subject of Section 4.3.3. The final representation is a single matrix representation
discussed in Section 4.3.4. To conclude, the rational Arnoldi iteration is introduced in
Section 4.3.5.
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4.3.1 Hessenberg pencil

An orthonormal basis Qk ∈ Cm×k for Kk(A, v; Ξ) can be obtained by orthonormalizing
the Krylov basis or, equivalently, by computing the QR decomposition of the Krylov
matrix BΞ

k . The recurrence pencil describing the generation of an orthonormal basis
can be represented as a Hessenberg pencil. This is stated in Theorem 4.2. This
theorem is stated for finite poles, since it uses Lemma 4.2 in its proof. In Section 4.3.5,
Theorem 4.4, it is shown that Theorem 4.2 holds for ξi ∈ C\σ(A).

Theorem 4.2 (Orthogonal rational Krylov basis: Hessenberg pencil). Consider a
nested orthonormal basis Qk+1 ∈ Cm×k for Kk+1(A, v; Ξ), k < g, where ξi ∈ C\σ(A).
Then a Hessenberg pencil (Hk,Kk) ∈ C(k+1)×k × C(k+1)×k exists which satisfies

AQk+1Kk = Qk+1Hk or, equivalently,

AQkKk + kk+1,kAqke
>
k = QkHk + hk+1,kqke

>
k ,

where qk = Qk+1ek+1 and hi+1,i
ki+1,i

= ξi, i = 1, 2, . . . , k.

Proof. Consider the Krylov recurrence relation

ABΞ
k+1Ck = BΞ

k+1F k

and the QR decomposition BΞ
k+1 = Qk+1Rk+1. Then substituting the QR

decomposition into the recurrence relation reveals the recurrence pencil for an
orthonormal basis

AQk+1Rk+1Ck︸ ︷︷ ︸
=:Kk

= Qk+1Rk+1F k︸ ︷︷ ︸
=:Hk

.

Since multiplication with an upper triangular matrix preserves the lower triangular
structure, Hk and Kk are Hessenberg matrices. Writing Qk+1 =

[
Qk qk

]
and some

basic manipulation of the recurrence relation shows that

AQkKk + rk+1,k+1Aqke
>
k = QkHk + ξkrk+1,k+1qke

>
k .

Note that kk+1,k = rk+1,k+1 and hk+1,k = ξkrk+1,k+1, which completes the proof.

Corollary 4.2. If ξk =∞, then

• the recurrence relation AQkKk + kk+1,kAqke
>
k = QkHk + hk+1,kqke

>
k from

Theorem 4.2 becomes AQkKk = QkHk + hk+1,kqke
>
k .

• the orthogonal projection of A onto the space spanned by Qk is given by (Hk,Kk).
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4.3.2 Core factorization

The core factorization of a Hessenberg pencil (H,K) ∈ Ck×k × Ck×k is the pencil of
the core factorizations of the two Hessenberg matrices H,K. By Lemma 3.4, the core
factorization of H is H = QHRH , with QH = C1C2 . . . Ck−1 and of K is K = QKRK ,
with QK = C̃1C̃2 . . . C̃k−1, with Ci, C̃i ∈ Ci. Thus, the core factorization of (H,K) is
(C1C2 . . . Ck−1RH , C̃1C̃2 . . . C̃k−1RK), with Ci, C̃i ∈ Ci.

Definition 4.3 (Proper Hessenberg pencil). A Hessenberg pencil (H,K) is said to be
proper if hi+1,iki+1,i 6= 0, i.e., no subdiagonal elements of H,K are simultaneously
zero.

The core factorization is a powerful tool to analyze structures of matrices thanks to
the operations that can be defined between core transformations. Lemma 4.3 provides
such an operation, called a turnover.

Lemma 4.3 (Turnover lemma [176], Lemma 9.38). Consider the product of three core
transformations Ci−1CiĈi−1, where Ci−1, Ĉi−1 ∈ Ci−1 and Ci ∈ Ci. Then there exist
Γi−1 ∈ Ci−1 and Γi, Γ̂i ∈ Ci such that

� ��
�

�
� = �

�
�

�� �

Ci−1CiĈi−1 = ΓiΓi−1Γ̂i.

The turnover operation is used in Section 4.3.3 and Section 4.3.4 to derive alternative
representations of the recurrence coefficients.

4.3.3 Inverse Hessenberg pencil

The recurrence relation for an orthonormal basis for rational Krylov subspaces can be
represented by a recurrence pencil with inverse Hessenberg structure. Theorem 4.3
states the result for poles in C, starting from Theorem 4.4. This representation of the
recurrence coefficients is paramount to deriving the structures of recurrence pencils
for biorthogonal bases.

Theorem 4.3 (Orthonormal basis for RKS: inverse Hessenberg pencil). Let Qk+1 ∈
Cm×(k+1) be an orthonormal nested basis for Kk+1(A, v; Ξ), k < g. Then an inverse
Hessenberg pencil (H inv

k ,Kinv
k ) ∈ Ck×k ×Ck×k exists for which the recurrence relation

AQkK
inv
k + E1 = QkH

inv
k + E2,

with rank(E1) = rank(E2) = 1, holds.
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Proof. A Hessenberg pencil (Hk,Kk) follows from Theorem 4.4 and satisfies

AQkKk + kk+1,kAqke
>
k = QkHk + hk+1,kqke

>
k .

Consider the core factorizations Hk =
∏k−1
i=1 CiR

R
k and Kk =

∏k−1
i=1 C̃iR

L
k . Now

substitute the core transformations into the recurrence relation, use Lemma 3.5, basic
manipulations of the core transformations and Lemma 4.3 to obtain

AQk R̃Lk

��
��

��
. . .

��

+E(0)
1 = R̃Rk

��
��

��
. . .

��

+E(0)
2

AQk R̃Lk

�
�

�

�
�

�

··
·

��

+E(1)
1 = R̃Rk

��
��

��
. . .

��

+E(1)
2

AQk R̃Lk

�
�

�

�
�

�

··
·

��

+E(1)
1 = R̃Rk

��
��

��
. . .

��

+E(1)
2

AQk R̃Lk

�
�

�

�
�

�

··
·

��

+E(2)
1 = R̃Rk

�
�

�

�
�

�

··
·

��

+E(2)
2

The terms E(i)
1 and E(i)

2 , i = 0, 1, 2, have at most rank 1. Use Lemma 3.5 again and
we obtain, for upper triangular R̂Rk and R̂Lk , the pencil (

∏i
i=k−1 ĊiR̂

R
k ,
∏i
i=k−1 ĈiR̂

L
k ),

which has inverse Hessenberg structure and rank(R̂Rk ) = rank(RRk ), rank(R̂Lk ) =
rank(RLk ) since all multiplications involved nonsingular matrices.
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4.3.4 Recurrence matrix

A single matrix representation Zk of the recurrence matrix can be derived from the
Hessenberg recurrence pencil. The general core factorization of this single matrix
representation is shown in Figure 4.1. The recurrence matrix for orthogonal bases of

Zk = R̃Rk

��
��

��
. . .

��

�
�

�

�
�

�

··
·

��

Figure 4.1: Core factorization of a recurrence matrix for an orthonormal basis of
K(A, v; Ξ)

rational Krylov subspaces will be referred to as having rational Hessenberg structure,
see Definition 4.4 where also a pictographic notation is introduced.

Definition 4.4 (Rational Hessenberg structure). A matrix Zk has rational Hessenberg
structure, or equivalently, Zk is a rational Hessenberg matrix, if it has a core
factorization consisting of a descending pattern multiplied by an ascending pattern
(pre-or postmultiplication, by Lemma 4.3). A pictographic notation will be used:

R

�
�

�
�

··
·

��

��
��

. . .
��

→

The pictographic notation in Definition 4.4 highlights the structure of Zk, full lines
enclose elements without rank structure and dashed lines enclose submatrices which
exhibit low rank structure. Example 4.7 illustrates this notation.
Before providing this example, the following discussion is given for completeness. The
properties discussed are not essential in the remainder of this manuscript. Rational
Hessenberg matrices can be decomposed using an extended Hessenberg matrix. These
arise from extended Krylov subspaces. Extended Krylov subspaces are rational Krylov
subspaces which only allow ξi = 0 or ξi = ∞. Core factorizations of recurrence
matrices for orthogonal bases of extended Krylov subspaces consist of a single pattern,
which has descending and ascending subpatterns. This follows by noting that if ξi = 0
or ξi = ∞, a core transformation appears only in one of the two matrices in the
recurrence pencil, the other core transformation must be trivial.
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Definition 4.5 (Extended Hessenberg structure). A matrix Zk ∈ Ck×k that has
the core factorization

(∏
σ(i) Ci

)
Rk, Ci ∈ Ci and Rk upper triangular for some

permutation σ of {1, 2, . . . , k − 1} is said to have extended Hessenberg structure.

A rational Hessenberg matrix can be decomposed as the sum of an extended Hessenberg
matrix plus a diagonal matrix containing the poles. Our interest is mainly in the
pencil representation, so we do not go into detail on this decomposition, for more
details we refer to the literature [39].

Example 4.7. Consider the poles Ξ̂ = {∞, 0, 0,∞,∞,∞} which generate the extended
Krylov subspace

K7(A, v; Ξ̂) = span{v,Av,A−1v,A−2v,A2v,A3v,A4v}.

The recurrence matrix Ẑ for an orthogonal basis of K7(A, v; Ξ̂) has the core factorization
Ẑ = C1C4C5C6C3C2R, Ci ∈ Ci. The structure of Z is shown in Figure 4.2,
On the diagonal of Ẑ, submatrices with Hessenberg or inverse Hessenberg structure

Z =

��
�

�
�

�
�

�
��

��

=

× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

× × ×
× ×




Figure 4.2: Recurrence matrix Ẑ = C1C4C5C6C3C2R of an orthonormal basis for
K7(A, v; Ξ̂).

appear, they are indicated by the lines in the figure.
If the finite poles ξ2 6= 0, ξ3 6= 0 and Ξ̇ = {∞, ξ2 = µ2

ν2
, ξ3 = µ3

ν3
,∞,∞,∞} then

K7(A, v; Ξ̇) = span{v,Av, φ1(A)v, φ2(z)v,A2v,A3v,A4v},

with φ1(z) = (ν2z − µ2)−1 and φ2(z) = (ν3z − µ3)−1φ1(z). The recurrence matrix
Ż = Ċ1Ċ2Ċ3Ċ4Ċ5Ċ6C̃3C̃2R̂ is a rational Hessenberg matrix. A rational Hessenberg
matrix can be decomposed in an extended Hessenberg matrix plus a diagonal, as is
shown in Figure 4.3. Note that in this figure the second subblock indicated by a contour
changes from a rational Hessenberg block to a inverse Hessenberg block by the extraction
of the poles ξ2 and ξ3.
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Figure 4.3: Recurrence matrix Ż = Ċ1Ċ2Ċ3Ċ4Ċ5Ċ6C̃3C̃2R̂ of an orthonormal basis
for K7(A, v; Ξ̇).

4.3.5 Rational Arnoldi iteration

The idea is the same as for the polynomial Arnoldi iteration. The expansion is
done by multiplying a suitable vector by A or (A − ξiI)−1. Any vector tk in the
space Kk(A, v; Ξk−1), which satisfies (νkA−µkI)−1(ρkA−ηkI)tk ∈ Kk+1(A, v,Ξk) for
suitable parameters νk, µk, ρk, ηk, is a candidate continuation vector. Mathematically
all suitable choices of tk will be equivalent. However, numerical stability of a rational
Krylov subspace method will depend on an appropriate choice and representation
of the continuation vector [18, 144]. This vector will be represented in some basis
Kk(A, v; Ξk−1) and its coefficients in that basis is denoted by the vector τk. After the
expansion, Gram-Schmidt orthogonalization is applied to (νnA−µnI)−1(ρnA−ηnI)tk,
which orthogonalizes with respect to Kk(A, v; Ξk−1).
Suppose an orthonormal basis Qk is available for Kk(A, v; Ξk−1). The rational Arnoldi
iteration [144] chooses tk = Qkek = qk−1, i.e., a representation in the orthonormal
basis Qk and τk = ek. Theorem 4.4 shows that a Hessenberg recurrence pencil with
specific subdiagonal elements represents an orthonormal basis for any RKS K(A, v; Ξ),
with ξi ∈ C.

Theorem 4.4 (Rational Arnoldi iteration [144]). Consider A ∈ Cm×m, v ∈ Cm and
a set of poles Ξk = {ξ1, ξ2, . . . , ξk} ∈ C. Let Qk+1 ∈ Cm×(k+1) be an orthonormal



68 STRUCTURED MATRICES IN RATIONAL KRYLOV SUBSPACES

nested basis for the rational Krylov subspace Kk+1(A, v; Ξk), k < g, with g the grade
of v with respect to A. Then Qk+1 satisfies

AQk+1Kk = Qk+1Hk

for Hessenberg matrices Hk,Kk ∈ C(k+1)×k, with (h
k
)i+1,i

(kk)i+1,i
= ξi, i = 1, 2 . . . , k.

Proof. Expansion of Kl(A, v; Ξl−1) is performed by (νlA− µlI)−1(ρlA− ηlI)Qlel =
(νlA − µlI)−1(ρlA − ηlI)ql, with µl

νl
= ξl and parameters such that Kl(A, v; Ξl−1) ∪

{(νlA − µlI)−1(ρlA − ηlI)ql} = Kl+1(A, v; Ξl). Orthonormalization with respect to
Kl(A, v; Ξl−1), using the basis Ql, provides the coefficients hi,l, i = 1, 2, . . . , l + 1,

hl+1,lql+1 = (νlA− µlI)−1(ρlA− ηlI)ql − h1lq1 − · · · − hllql. (4.3)

Rewriting (4.3) reveals the lth column of matrices H l and Kl

(νlA− µlI)hl+1,lql+1 = (ρlA− ηlI)ql − (νlA− µlI)
l∑
i=1

hilqi

νlAhl+1,lql+1 + νlA

l∑
i=1

hilqi − ρlAvl = −ηlql + µl

l∑
i=1

hilqi + µlhl+1,lql+1

A

(
(νl

l+1∑
i=1

hilqi)− ρlql

)
= µl

(
l+1∑
i=1

hilqi

)
− ηlql

Aνl
[
q1 . . . ql ql+1

]


h1l
...

hll − ρl/νl
hl+1,l

 = µl
[
q1 . . . ql ql+1

]


h1l
...

hll − ηl/µl
hl+1,l

 .
The last equation reveals that the subdiagonal element ratio is µlhl+1,l

νlhl+1,l
= µl

νl
= ξl.

Since this is valid for l ≤ k, the proof is complete.

Algorithm 4 contains the procedure following from the Hessenberg recurrence pencil in
Theorem 4.4. Because of the Hessenberg structure the algorithm relies on an infinite
recurrence relation.

Other choices of continuation vectors have been studied by Berljafa and Güttel.
They explored optimal and near-optimal continuation pairs (a continuation vector
tk and shift parameters ρk, ηk) [16] and suitable choices of continuation pairs for a
parallel rational Arnoldi iteration [19]. For state-of-the-art methods for rational Krylov
subspaces we refer to rktoolbox [17].
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Algorithm 4 Rational Arnoldi iteration [143]
1: Input: A ∈ Cm×m, v ∈ Cm, integer k < g, Ξk−1 = {ξ1, ξ2, . . . , ξk−1}
2: Output: Orthogonal Qk+1 ∈ Cm×k+1, Hessenberg matrices Hk,Kk ∈ C(k+1)×k

such that AQk+1Kk = Qk+1Hk.
3: procedure Arnoldi_iteration(A, v, k,Ξ)
4: q0 = v/‖v‖
5: for i = 1, 2, . . . , k do
6: qi = (νkA− µkI)−1(ρkA− ηkI)qi−1 . with µk

νk
= ξk ∈ C

7: for j = 1, 2, . . . , i do . Orthogonalization
8: hj,i = 〈qi, qj〉E
9: qi = qi − hj,iqj

10: end for
11: hi+1,i = ‖qi‖
12: qi = qi/hi+1,i . Normalization
13: end for
14: Kk = diag(ν1, . . . , νk)Hk − diag(ρ1, . . . , ρk)
15: Hk = diag(µ1, . . . , µk)Hk − diag(η1, . . . , ηk)
16: end procedure

Orthogonal projection

The pencil (Hk,Kk) only represents the orthogonal projection of A onto Kk(A, v; Ξ)
if ξk =∞, which follows from Corollary 4.2.
If ξk 6=∞, then the pencil (Hk,Kk) can still be used to obtain an orthogonal projection,
without explicitly computing QHk AQk [16].
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4.4 Biorthogonal bases

To obtain short recurrence relations for bases of rational Krylov subspaces, two related
Krylov subspaces must be generated, one with A and one with AH ,

Kk(A, v; Ξ) and Kk(AH , w; Θ).

The starting vectors must satisfy 〈v, w〉E 6= 0. Then biorthonormal nested bases
Vk,Wk ∈ Cm×k for these spaces exists, i.e., for i = 1, 2, . . . , k

span{Vi} = span{v0, v1, . . . , vi−1} = Ki(A, v; Ξ),

span{Wi} = span{w0, w1, . . . , wi−1} = Ki(AH , w; Θ),

WH
k Vk = I

The pair of recurrence relations generating these bases are of the form

AVk+1Kk = Vk+1Hk,

AHWk+1K̃k = Wk+1H̃k.

The goal of this section is to show that the matrices Hk,Kk, H̃k, K̃k can be chosen to
be tridiagonal matrices, implying short recurrence relations for the biorthonormal bases.
First, several possible structures for these matrices are studied in Section 4.4.1 Then,
Section 4.4.2 discusses the three term recurrence relation generating biorthogonal bases
in detail. The eliminator factorization of tridiagonal pencils is the topic of Section
4.4.3. All the results in this section are new and are published in our paper [165],
with the exception of Theorem 4.5, which has been proven before for extended Krylov
subspaces [128] and is generalized here to all rational Krylov subspaces.

4.4.1 Recurrence relations for biorthonormal bases

The recurrence matrix of the pair of recurrence relations for biorthonormal bases is
discussed first. Afterwards, recurrence pencils are derived. This result is novel and
generalizes many special cases appearing in the literature.
Throughout this section only full decompositions will be used in the proofs,
i.e., recurrence matrices and pencils for bases that span Km(A, v; Ξ) = Cm and
Km(AH , w; Θ) = Cm. This is done for simplicity of the exposition; the proofs simplify
for full decompositions.
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Recurrence matrix

A recurrence matrix for biorthogonal bases has upper and lower triangular rank
structures determined by the related recurrence matrices for orthogonal bases. This is
illustrated by Example 4.8 and formalized in Theorem 4.5.

Example 4.8. Consider A ∈ C8×8 and rational Krylov subspaces with Ξ̂ =
{∞,∞,∞,∞, 0,∞, 0} and Θ̂ = {0,∞, 0, 0, 0,∞,∞},

K8(A, v; Ξ̂) = span{v,Av,A2v,A3v,A4v,A−1v,A5v,A−2v},

K8(AH , w; Θ̂) = span{w, (AH)−1w,AHw, (AH)−2w, (AH)−3w, (AH)−4w,

(AH)2w, (AH)3w}.

The structure of the recurrence matrices ZV8 , Z
W
8 for orthogonal bases, QV8 for

K8(A, v; Ξ̂) and QW8 for K8(AH , w; Θ̂) is discussed in Section 4.3.4 and shown
in Figure 4.4. This figure also shows the recurrence matrix Z8 for generating a
basis V8, for K8(A, v; Ξ̂) that is orthogonal to K8(AH , w; Θ̂). The lower and upper
triangular structure of Z8 corresponds to the lower triangular structure of ZV8 and
ZW8 , respectively. Black lines are added to highlight the structure.
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(c) AV8 = Z8V8

Figure 4.4: Structure of recurrence matrices or orthogonal and biorthogonal bases for
K8(A, v; Ξ̂) and K8(AH , w; Θ̂) from Example 4.8.

The result, provided in Theorem 4.5, is valid for any configuration of poles in both
subspaces. This generalizes results which restrict the allowed poles [41,112,152,179].

Theorem 4.5 (Recurrence matrix for biorthonormal basis for a rational Krylov
subspace). Consider A ∈ Cm×m, v, w ∈ Cm, with 〈v, w〉E 6= 0 and Ξ,Θ, with ξi ∈
C\σ(A) and θi ∈ C\σ(AH). Then, under the assumption that no breakdowns occur,
nested biorthogonal bases V,W for K(A, v; Ξ) and K(AH , w; Θ), respectively, satisfy

AV = V Z, AHW = WZH
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where the lower triangular structure of Z, ZH is equivalent to the lower triangular
structure of the orthogonal recurrence matrix related to K(A, v; Ξ), K(AH , w; Θ),
respectively.

Proof. Consider the matrices ZV and ZW

ZV = (QV )HAQV , ZW = (QW )HAHQW ,

where QV and QW are orthogonal bases for the rational Krylov subspaces K(A, v; Ξ)
and K(AH , w; Θ), respectively, with 〈v, w〉E 6= 0. Use Lemma 2.2 for the Gram matrix
M = (QW )HQV :

M = (QW )HQV = LR

(QWL−H︸ ︷︷ ︸
=:W

)H QVR−1︸ ︷︷ ︸
=:V

= I

WHV = I.

This decomposition exists under the assumption that M is strongly nonsingular, which
is implied by the assumption that no breakdown occurs. The structure of Z can be
derived as follows. First consider

AV = V Z

A V R︸︷︷︸
QV

= V R︸︷︷︸
QV

R−1ZR

AQV = QV R−1ZR︸ ︷︷ ︸
ZV

which provides the equality
Z = RZVR−1. (4.4)

Second consider the relations

AHW = WZH

AHWLH︸ ︷︷ ︸
QW

= WLH︸ ︷︷ ︸
QW

L−HZHLH

AHQW = QW L−HZHLH︸ ︷︷ ︸
ZW

which provides the equality
ZH = LHZWL−H . (4.5)
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Multiplication with an upper triangular matrix preserves the structure in the lower
triangular part. Hence, from (4.4) it follows that the lower triangular structure of Z
is the same as the lower triangular structure of ZV . The upper triangular structure of
Z is the same as the lower triangular structure of ZW . This follows from (4.5).

Note that when all poles are chosen to be infinite, the recurrence matrix is a tridiagonal
matrix, which agrees with the results from Section 3.4.

Recurrence pencil

The recurrence pencil for biorthogonal bases also inherits the structure of recurrence
pencils for orthogonal bases. For an orthogonal basis we studied Hessenberg or inverse
Hessenberg pencil. Based on these, four important forms in which the recurrence
pencil for biorthogonal bases can appear are derived. By inverted structure, we mean
that the pattern of the core factorization is changed from ascending to descending.

Lemma 4.4 (Recurrence pencil structure for biorthogonal bases of rational Krylov
subspaces). Consider A ∈ Cm×m, v, w ∈ Cm, with 〈v, w〉E 6= 0 and Ξ,Θ, with
ξi ∈ C\σ(A) and θi ∈ C\σ(AH). Let QV , QW ∈ Cm×m be orthogonal nested bases
for K(A, v; Ξ) and K(AH , w; Θ), respectively, and corresponding pencils (HV ,KV ),
(HW ,KW ) satisfying

AQVHV = QVKV , AHQWHW = QWKW .

Then, under the assumption that no breakdown occurs, biorthonormal nested bases
V,W for K(A, v; Ξ) and K(AH , w; Θ), respectively, satisfy

AVK = V H,

AHWK̃ = WH̃,

where the recurrence pencils can be chosen such that

• H has the lower triangular structure of HV and the upper triangular structure
equals the inverted upper triangular structure of KW ,

• K has the same lower triangular structure as KV and the upper triangular
structure equals the inverted lower triangular structure of HW ,

• H̃ has the lower triangular structure of HW and the upper triangular structure
equals the inverted upper triangular structure of KV ,

• K̃ has the same lower triangular structure as KW and the upper triangular
structure equals the inverted lower triangular structure of HV .
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Proof. From the orthogonal bases QV and QW , the biorthonormal bases V and W
can be constructed via Lemma 2.2, i.e., V := QVR−1 and W := QWL−H , with
M = (QW )HQV = LR. Substituting the expressions for V,W in the recurrence
relations for QV , QW provides{

AQVKV = QVHV

AHQWKW = QWHW

⇔

{
AV RKV = V RHV

AHWLHKW = WLHHW

⇔

{
WHAV RKV = RHV

V HAHWLHKW = LHHW
.

Taking the Hermitian conjugate of the second equation and rewriting it reveals the
connection between the matrices at play{

WHAV RKV = RHV

WHAV L−1(HW )−H = L−1(KW )−H
.

Since these expressions are only unique up to right multiplication with a nonsingular
matrix B, we get

RKVB = L−1(HW )−H

RHVB = L−1(KW )−H .

To obtain a particular choice for the structure of H and K it suffices to represent
B in its RL-decomposition B = RBLB (assuming it exists), where RB is an upper
triangular matrix and LB a lower triangular matrix,{

RKVB = L−1(HW )−H

RHVB = L−1(KW )−H

⇔

{
RKVRBLB = L−1(HW )−H

RHVRBLB = L−1(KW )−H

⇔

{
RKVRB = L−1(HW )−HL−1

B =: K
RHVRB = L−1(KW )−HL−1

B =: H
.

For the remainder of this proof H and K are defined as in the last equation. Since
R and RB are upper triangular matrices, they preserve the structure in the lower
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triangular part. This means that K and KV have the same lower triangular structure
and so do H and HV . On the other hand K shares its upper triangular structure
with (HW )−H and H with (KW )−H , since L and LB are lower triangular matrices.
An analogous derivation holds for H̃, K̃.

The principal result of this section is Theorem 4.6, which states that a tridiagonal
recurrence pencil exists describing the construction of biorthogonal bases for rational
Krylov subspaces.

Theorem 4.6 (Tridiagonal pencil for biorthogonal rational Krylov subspaces). The re-
currence pencil (H,K) for biorthonormal nested bases V,W of K(A, v; Ξ),K(AH , w; Θ),
as in Theorem 4.4, can be chosen to be tridiagonal pencils (T, S) and (T̃ , S̃).

Proof. If (HV ,KV ) is chosen to be a Hessenberg pencil (Theorem 4.4) and (HW ,KW )
to be an inverse Hessenberg pencil (Theorem 4.3), then Lemma 4.4 guarantees that
(T, S) has tridiagonal structure. For (T̃ , S̃) the same argument holds by relying on
the fact that an inverse Hessenberg pencil representation for (HV ,KV ) can be chosen
as well, which is equivalent in the sense that it describes the same recurrence relation.
Hence, both representations are valid at the same time. And for (HW ,KW ), the
equivalent Hessenberg pencil representation must be chosen.

The tridiagonal recurrence pencil is only one instance of the possible representations,
of which we will distinguish the four principal representations.

Classification of structures

A classification of the structures of the recurrence matrix and pencils is shown in Table
4.5. The recurrence matrix structure follows from Theorem 4.5. The four recurrence
pencils follow from Lemma 4.4 by choosing different representations for the recurrence
pencils of the related orthogonal bases that appear in Section 4.3.1 or Section 4.3.3.

A tridiagonal pencil is discussed above and will be elaborated upon further in this
manuscript. A semiseparable pencil is a pencil of semiseparable matrices. Details
on semiseparable matrices can be found in the literature [173–176]. The remaining
two recurrence pencils classified in the table are hybrids between tridiagonal and
semiseparable. All the matrices appearing in the recurrence pencils belong to the class
of basic matrices, introduced by Fiedler [66].
The recurrence matrix for non-Hermitian A and extended Krylov subspaces was first
studied in the context of inverse eigenvalue problems [128], it is called an extended
tridiagonal matrix. If A is Hermitian, the recurrence matrix representation, Z, is
a semiseparable-plus-diagonal matrix [63, Theorem 1] and the connection between
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WHAV = Z WHAVK = H

tridiagonal pencil semiseparable pencil

Table 4.5: Summary of matrix structures appearing for the recurrence coefficients for
biorthogonal bases of rational Krylov subspaces, with the biorthonormal bases V and
W .

a Hermitian semiseparable-plus-diagonal matrix and a tridiagonal pencil has been
exploited by Fasino and Gemignani to solve inverse eigenvalue problems [65].

4.4.2 Three term recurrence relation

The tridiagonal recurrence pencil from Theorem 4.6 implies that a pair of short
recurrence relations exist which generate biorthogonal bases for rational Krylov
subspaces. We are interested in short recurrence relations since they can lead to
much cheaper algorithms for rational Krylov subspace methods. And, as discussed
in Chapter 7, the tridiagonal pencil is related to biorthogonal rational functions, so
efficient matrix theoretical algorithms for rational functions can be developed. In
order to develop numerical procedures the location of the poles of the rational Krylov
subspaces in the pencil must be determined. This knowledge will allow us to develop
a Lanczos-type iteration.

Location of poles

A tridiagonal recurrence pencil for rational Krylov subspaces reveals the poles of these
spaces on the sub-and superdiagonal of the pencil. Lemma 4.5 and Lemma 4.6 state
the exact location of the poles in the pencil.

Lemma 4.5 (Poles on subdiagonal of tridiagonal pencil). Let (T, S) be the tridiagonal
recurrence pencil from Theorem 4.6. The ratio of the subdiagonal elements of (T, S)
reveals the poles Ξ = {ξ1, ξ2, . . . , ξm−1} of K(A, v; Ξ)

ti+1,i

si+1,i
= ξi, i = 1, 2, . . . ,m− 1. (4.6)
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Proof. Use the variables from the proof of Lemma 4.4. Consider the Hessenberg
pencil (HV ,KV ), then, from Theorem 4.4, it follows that the ratio of the subdiagonal
elements of (HV ,KV ) equals the poles

hVi+1,i

kVi+1,i
= ξi, i = 1, 2, . . . ,m− 1.

Since, for upper triangular matrices R and RB we have

ti+1,i

si+1,i
=
ri+1,i+1h

V
i+1,i(rB)ii

ri+1,i+1kVi+1,i(rB)ii
=
hVi+1,i

kVi+1,i
, i = 1, 2, . . . ,m− 1,

the statement follows. In the first equality we used a result stated in the proof of
Theorem 4.4.

Lemma 4.6 (Poles on superdiagonal of tridiagonal pencil). Let (T, S) be the
tridiagonal pencil from Theorem 4.6. The ratio of the superdiagonal elements of (T, S)
reveals the (complex conjugate of the) poles Θ = {θ1, θ2, . . . , θm−2} of K(AH , w; Θ)

ti,i+1

si,i+1
= θ̄i−1, i = 2, 3, . . . ,m− 1. (4.7)

Proof. Use the variables from Lemma 4.4 and Theorem 4.6. Another tridiagonal pencil
(T̃ , S̃) exists for which

AHWS̃ = WT̃ . (4.8)

Hence, from Lemma 4.5 we know that the ratios of the subdiagonals of (T, S) and
(T̃ , S̃) reveal the poles of K(A, v; Ξ) and K(AH , w; Θ), respectively.
Starting from the tridiagonal pencil (T, S) satisfying AV S = V T and Equation (4.8)
we can relate the matrix pencils as follows{

WHAV = TS−1

V HAHW = T̃ S̃−1 ⇒

{
WHAV = TS−1

WHAV = S̃−H T̃H

concluding that TS−1 = S̃−H T̃H . Rewriting this equation as S̃HT = T̃HS leads to
two pentadiagonal matrices. Let us assign a variable to each off-diagonal element,
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diagonal elements are denoted by ×, because these are not relevant for the proof

× σ̃1
s̃1 × σ̃2

s̃2 ×
. . .

. . . . . . σ̃n−1
s̃n−1 ×



H 

× τ1
t1 × τ2

t2 ×
. . .

. . . . . . τn−1
tn−1 ×

 =



× s̃1
t̃1 × s̃2

t̃2 ×
. . .

. . . . . . s̃n−1
t̃n−1 ×



H 

× σ1
s1 × σ2

s2 ×
. . .

. . . . . . σn−1
sn−1 ×

 .

Equate the second superdiagonals and second subdiagonals of both pentadiagonal
matrices {

tiσ̃
H
i+1 = siτ̃

H
i+1

τi+1s̃
H
i = σi+1t̃

H
i

, i = 1, . . . ,m− 2,

⇒

{
ξi = ti/si = τ̃Hi+1/σ̃

H
i+1

ψi = t̃i/s̃i = τHi+1/σ
H
i+1

, i = 1, . . . ,m− 2,

where the last equality uses Lemma 4.5.

Note that Lemma 4.6 allows for freedom in the choice of t1,2 and s1,2, since there is
no relation to the given poles. The results from Theorem 4.6, Lemma 4.5 and Lemma
4.6 can be used to construct a pair of three term recurrence relations generating
biorthogonal bases for rational Krylov subspaces. This is a Lanczos-type iteration and
is derived in Chapter 8.

4.4.3 Eliminator factorization

The tridiagonal matrices T, S allow for an eliminator factorization as in Lemma 3.9.
The eliminator factorization of the tridiagonal pencil (T, S) equals the pencil of the
eliminator factorization of T and the eliminator factorization of S. Manipulation
of the eliminators appearing in the tridiagonal pencil (T, S) allows us to obtain all
the recurrence pencils from Table 4.5. The necessary operations to derive the other
recurrence pencils are provided here. These are operations working directly with
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eliminators. First note that Elk is closed under multiplication with Elk ∈ Elk and under
inversion, i.e., for Elk, Êlk ∈ Elk we have ElkÊlk ∈ Elk and

(
Elk
)−1 ∈ Elk. The same is

valid for Euk .
Lemma 4.7 show how an upper and lower eliminator can switch places by forming the
product and factorizing again. An analogue to the turnover of core transformations
is provided for eliminators in Lemma 4.8. And finally, the passing through of an
eliminator, through a diagonal matrix, is provided in Lemma 4.9.
Lemma 4.7 (LDR/RDL factorization of a 2×2 matrix [128]). A strongly nonsingular
2× 2 matrix, that is also strongly nonsingular for all its trailing principal submatrices,
has an LDR and RDL factorization consisting of eliminators[

× ×
× ×

]
= �b

[
×
×

]
d� and

[
× ×
× ×

]
= d�

[
×
×

]
�b .

Lemma 4.8 (Turnover lemma: eliminators [128]). Consider the product of three lower
eliminators Eli−1E

l
iÊ

l
i−1, where Eli−1, Ê

l
i−1 ∈ Eli−1 and Eli ∈ Eli. Then there exist

εli−1 ∈ Eli−1 and εli, ε̂li ∈ Eli such that

d d�
d

�
� = d

d
�
d� �

Eli−1E
l
iÊ

l
i−1 = εliε

l
i−1ε̂

l
i.

The same is valid for upper eliminators Eui−1, Ê
u
i−1 ∈ Eui−1, Eui ∈ Eui , εui−1 ∈ Eui−1 and

εui , ε̂
u
i ∈ Eui ,

� �b
�
b

b
= �

�
b

�b b

Eui−1E
u
i Ê

u
i−1 = εui ε

u
i−1ε̂

u
i .

Lemma 4.9 (Passing through [128]). Let D ∈ Cm×m be a nonsingular diagonal
matrix, then the following equalities hold for Eli, Êli ∈ Eli and Eui , Êui ∈ Eui

EliD = DÊli, d� D = D d� ,

Eui D = DÊui ,
�b D = D �b .

Proof. Since the eliminator only influences a 2× 2 submatrix of D, the proof is stated
for a 2× 2 matrix and follows immediately from basic linear algebra manipulations:

d�
[
d1

d2

]
=
[
1
l 1

] [
d1

d2

]
=
[
d1

d2

] [
1

ld1/d2 1

]
=
[
d1

d2

]
d� .
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The element d2 is nonzero by the nonsingularity of D. Proof for upper eliminators is
the same.

These three lemmas allow for the derivation of all the recurrence pencils and the
recurrence matrix appearing in biorthogonal recurrence relations for a rational Krylov
subspace. This is omitted here, since the structures have already been derived in the
above section.

4.5 Special cases

Two important special cases are discussed in detail: the case when A is a Hermitian
matrix and the case when it is a unitary matrix. These cases are discussed and they
are put into the biorthogonal framework developed throughout this chapter. Rational
Krylov subspaces for Hermitian matrices recently received some attention thanks to
the underlying short recurrence relations, which provide procedures that are more
efficient than Arnoldi-type iterations for certain applications [133]. The tridiagonal
recurrence pencil for a Hermitian matrix is discussed in Section 4.5.1. For unitary
matrices, Section 4.5.2 discusses a pencil representation for the (Hessenberg) recurrence
matrix for polynomial Krylov subspaces. This result is an important example when
discussing short recurrence relations in Chapter 5.

4.5.1 Hermitian matrix

For a Hermitian matrix A = AH and real poles, Ξ ∈ R, an interesting result originating
from the study of orthogonal rational functions [53] states that a tridiagonal recurrence
relation exists for rational Krylov subspaces K(A, v; Ξ). A matrix theoretic proof is
given by Güttel [98]. Theorem 4.7 states the result for real poles and in Theorem 4.8
we show that this result fits in the biorthogonal framework and that it also holds for
complex poles.

Theorem 4.7 (Hermitian rational Lanczos [53, 98]). Let A ∈ Cm×m be Hermitian,
i.e., AH = A, v ∈ Cm and Ξ = {ξi}m−1

i=1 a set of real poles, ξi ∈ R, for all i. Then the
recurrence relation generating an orthogonal basis Qk+1 for Kk(A, v) is satisfied for a
tridiagonal pencil (T k, Sk) ∈ C(k+1)×k

AQk+1Sk = Qk+1T k.

Proof. See Appendix A.1
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A slightly more general result than Theorem 4.7 can be obtained by using a continuation
vector, instead of the last vj to expand the RKS. However this does not change anything
to the proof, only the identity matrix Ik must be replaced by an upper triangular
matrix. Theorem 4.8 starts from a tridiagonal pencil and shows that for any choice of
poles ξi ∈ C and AH = A, v = w, the biorthonormal bases V,W reduce to a single
orthogonal basis Q. None of the tridiagonal matrices in the resulting pencil will be
Hermitian, this can only be obtained for real poles. This result is stronger than the
one stated in Theorem 4.7, dropping the need to restrict to real poles. A similar result
is stated in the paper by Deckers and Bultheel [54], who arrive at this result by means
of classical analysis. We provide a matrix theoretical approach.

Theorem 4.8 (Hermitian rational Lanczos: biorthogonal interpretation). Let AH = A,
v, w ∈ Cm, Ξ ⊂ C and consider a nested orthonormal basis Q ∈ Cm×m for K(A, v; Ξ).
Then Q satisfies

AQS = QT

for tridiagonal matrices T, S ∈ Cm×m.

Proof. Consider biorthonormal nested bases V,W for K(A, v; Ξ), K(AH , w; Ξ), AH = A
and w = v, respectively. From Theorem 4.6 it follows that

AV S = V T,

AWS̃ = WT̃ ,

with T, S, T̃ , S̃ tridiagonal. Lemma 4.5 and Lemma 4.6 state that the two pencils
have the same ratios on the sub-and superdiagonal, Ti+1,i

Si+1,i
= ξi, T̃i+1,i

S̃i+1,i
= ξi, for

i = 1, 2, . . . ,m− 1 Ti,i+1
Si,i+1

= ξ̄i−1, T̃i,i+1

S̃i,i+1
= ξ̄i−1, for i = 2, 3, . . . ,m− 1. Let B be the

Krylov basis for K(A, v; Ξ) = K(AH , w,Ξ), then the Cholesky factorization of the
corresponding Gram matrix is

M = BHB = RHR.

And V = BR−1, W = BR−1, therefore V = W = Q and QHQ = I, i.e., an
orthonormal nested basis for K(A, v; Ξ). Hence,

AQS = QT,

AQS̃ = QT̃ ,

and the sub-and superdiagonal elements can be altered, while preserving the ratios
revealing the poles, such that T̃ = T and S = S̃.
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4.5.2 Unitary matrices

The recurrence matrix H for an orthonormal basis for Km(U, v) for a unitary matrix
U ∈ Cm×m is unitary. This is stated in Section 3.3.1. Here another approach is
taken to illustrate the use of the biorthogonal framework once more and to derive a
bidiagonal pencil representation that reveals a short recurrence relation. Theorem 4.9
elaborates on the structure of the recurrence matrix.
Theorem 4.9 (Recurrence matrix for orthogonal basis of polynomial Krylov subspace:
unitary matrix). Consider a unitary matrix U ∈ Cm×m, and the polynomial Krylov
subspace K(U, v). Let V form an orthonormal basis for Km(U, v). Then, under the
assumption that no breakdown occurs, the projection Z = V HUV has Hessenberg
structure below and inverse Hessenberg structure above the diagonal.

Proof. Consider a unitary matrix U , U−1 = UH and rational (more precisely extended)
Krylov subspaces

K(U, v; Ξ̂ = {∞,∞, . . . }),

K(UH , v; Θ̂ = {0, 0, . . . }),

with respective orthonormal bases QV and QW . Since U−1 = UH , K(U, v; Ξ̂) =
K(UH , v; Θ̂) = K(U, v) and therefore QV = QW =: Q implying (QV )HQw = QHQ = I.
Hence, they are simultaneously orthogonal and biorthogonal bases.
Using the knowledge from Section 4.3.4 it is clear that the structure of

ZV = (QV )HAQV ,

ZW = (QW )HAHQW ,

is Hessenberg and inverse Hessenberg, respectively. Theorem 4.5 then states that
Z = (QW )HAQV = QHAQ has Hessenberg structure in its lower triangular part and
inverse Hessenberg structure in its upper triangular part.

The pencil analogue to Theorem 4.9 can be derived from Theorem 4.4. Theorem 4.10
reveals that a two coupled two-term recurrence relations generate an orthonormal basis
for K(U, v). This is equivalent to the recurrence relation for Szegö polynomials [157],
which is a classical result in classical analysis. The relation between structured matrices
and orthogonal polynomials is discussed in Chapter 6.
Theorem 4.10 (Recurrence pencil for orthogonal basis of polynomial Krylov subspace:
unitary matrix). Consider a unitary matrix U ∈ Cm×m and K(U, v). Let V form
an orthonormal basis for K(U, v). Then, under the assumption that no breakdown
occurs, the equation V HUVK = H is satisfied for a proper lower-bidiagonal and
upper-bidiagonal pencil (H,K).
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Proof. Consider a unitary matrix U , U−1 = UH and the same subspaces K(U, v; Ξ̂)
and K(UH , v; Θ̂) as in the proof of Theorem 4.9, with respective orthogonal bases QV
and QW , note that QV = QW =: V .
The pencil representation of orthogonal projections onto these subspaces are the
following

(QV )HUQVKV = HV ,

(QW )HUHQWKW = HW .

For (HV ,KV ), consider the standard case: KV is upper triangular and HV is of
Hessenberg form. For (HW ,KW ), choose HW to be of inverse Hessenberg form and
KW to be upper triangular. Then following from Theorem 4.4 the structure of (H,K)
is a lower bidiagonal and upper bidiagonal pencil.

Theorem 4.10 together with Theorem 4.9 shows that a unitary Hessenberg matrix Z
can be factorized as the product of a lower-bidiagonal matrix H and the inverse of an
upper-bidiagonal matrix K [176].

4.6 Conclusion

Three types of bases for rational Krylov subspaces are discussed. Rational Krylov
bases provide theoretical tools to analyze structure. Most notably, we show that
the rational Krylov basis can be represented as a product of matrices involving a
Vandermonde matrix. Orthogonal bases can be constructed in a numerically stable
way. Two important recurrence relations for orthogonal bases are derived in terms of
their core factorization. The possible structures of the recurrence matrices and pencils
generating biorthogonal bases are derived using the relation between recurrence pencils
for orthogonal bases and those for biorthogonal bases. This derivation makes use of
the core factorization and leads to a framework able to classify all structured matrices
arising from rational Krylov subspaces. As a main result we obtain that a tridiagonal
recurrence pencil suffices to generate biorthogonal bases.





Chapter 5

Gram matrices

Moments of a matrix A ∈ Cm×m with respect to v, w ∈ Cm,

mj := wHAjv, j = 0, 1, . . . , (5.1)

can be used to construct approximations to A. This is the idea behind moment
matching: an approximation Â ∈ Ck×k is constructed such that its first moments
coincide with those of A. The moment matching properties of projections onto
polynomial Krylov subspaces are well known. These can be obtained by using a
functional approach [29, 30, 124] initiated by Vorobyev [177] or by studying Gram
matrices. This chapter discusses the latter. Gram matrices contain moments as
their entries and might exhibit displacement structure [115]. Gram matrices with
displacement structure allow efficient algorithms, e.g., compute their LR factorization
by Schur reduction [117]. The LR factorization of a Gram matrix is related to
generating (bi)orthogonal vectors. In fact, studying the displacement structure can
reveal short recurrence relations for these (bi)orthogonal vectors derived directly from
the Gram matrix by the Levinson procedures [176]. For other fast and superfast
algorithms and connections to polynomial computation, we refer to the literature
[21,22,64,88,116,117,134,140]. These results are well known for polynomial Krylov
subspaces, i.e., the relation between the Lanczos iteration, tridiagonal matrices, Hankel
matrices, partial realization and Padé approximation [35, 74, 93, 135, 179]. Similar
results are known for Szegö polynomials, unitary Hessenberg matrices and Toeplitz
matrices [111,116].
This chapter elaborates on the connection between rational Krylov subspaces, Gram
matrices with a particular displacement structure and multi-point Padé approximation
(rational interpolation).
Section 5.1 introduces a generalization of moments, suitable for rational Krylov
subspaces, via their appearance in multi-point Padé approximation [73]. These

85
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moments allow us to construct Gram matrices for rational Krylov subspaces in
Section 5.2. In this section the displacement structure of all matrices, including Gram
matrices, arising from rational Krylov subspaces is analyzed. Section 5.3 elaborates
on the connection between the factorization of Gram matrices and how this generates
(bi)orthogonal vectors. A short note on the Levinson procedure is provided, which can
be used to derive short recurrence relations. This is done in Chapter 8. Most of the
results discussed here are known. The general form of the Gram matrices appearing in
rational Krylov subspaces and the corresponding displacement structure, see Section
5.2.3, is new.

5.1 Moments matching

The jth moment mj of a matrix A ∈ Cm×m with respect to v, w ∈ Cm contains
information about the matrix A. Thus it can be used to construct an approximation
to A. The moment matching technique constructs an approximation Â such that the
first 2k − 1 (or k) moments of Â match those of A, i.e.,

ŵHÂj v̂ = wHAjv, j = 0, 1, . . . , 2k − 2, ( or j = 0, 1, . . . , k − 1).

Moment matching for moments of the form (5.1) has an intimate connection to
polynomial Krylov subspaces [124]. Moments related to rational Krylov subspaces
require a generalization of (5.1). These are introduced by discussing their appearance
in system theory.
In system theory moment matching is used to obtain a reduced order model [2].
Consider the state space equations

Eẋ(t) = Ax(t) + bu(t)

y(t) = cHx(t)

with E,A ∈ Cm×m and b, c ∈ Cm. A reduced order model is computed, i.e., matrices
Â, Ê ∈ Ck×k and vectors b̂, ĉ ∈ Ck, such that

Êẋ(t) = Âx(t) + b̂u(t)

y(t) = ĉHx(t)

is a good approximation. The starting vectors for Krylov subspace methods are chosen
to be v = b, the input vector, and w = c, the output vector of the system. The quality
of the approximation will be indicated by the transfer functions. How well does the
transfer function of the reduced system correspond to the transfer function of the
original system? The transfer functions g(ξ) and ĝ(ξ) of the original and reduced
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system, respectively, are obtained by applying the Laplace transformation [73],

g(ξ) := y(ξ)
u(ξ) = cH(ξE −A)−1b,

ĝ(ξ) := ŷ(ξ)
û(ξ) = ĉH(ξÊ − Â)−1b̂.

The approximate transfer function ĝ(ξ) should match the first coefficients of the power
series expansion of g(ξ). Partial realization [2] uses the power series approximation
around a single frequency ξ, typically ξ = 0 and for mj = −cH(A−1E)jA−1b

the expansion is g(ξ) = m0 + m1ξ + ξ2

2!m2 + ξ3

3!m3 + · · · or s = ∞ and for
m−j = cH(E−1A)(j−1)E−1b we have g(ξ) = m−1ξ

−1 + m−2ξ
−2 + m−3ξ

−3 + · · · .
An effective numerical approach to compute the reduced order model is the Lanczos
iteration, which avoids explicit computation of the moments [93,95].
Approximation around a single frequency can lead to slow convergence far away from
this frequency, requiring a reduced model of large size to obtain a good approximation.
A possible approach to avoid this limitation is to approximate around multiple
frequencies. This approach is proposed by Gallivan et al. [73] and corresponds
to multi-point Padé approximation and to projections onto a rational Krylov subspace.
In terms of the transfer functions, their approach is to construct ĝ(ξ) such that
it matches coefficients of multiple power series expansions of g(ξ) around different
frequencies {ξ1, ξ2, . . . , ξı̂}. A rational generalization of the Lanczos iteration is a good
candidate to construct multi-point Padé approximations. A suitable rational Lanczos
iteration is proposed in Chapter 8 and the difference with the approach of Gallivan
and coauthors [73] is discussed.
Now we introduce the moments that arise from this approach and that will be
used throughout this manuscript. The power series expansion around ı̂ frequencies,
corresponding to rational Krylov subspaces, is

g(ξ) =
ı̂∑
i=1

∞∑
j=0

mj(ξi)
(ξ − ξi)j

j! , mj(ξi) = −cH(ξiE −A)−jEj(ξiE −A)−1b.

Therefore, moments of the form

mj(ξ) = −cH(A− ξI)−j−1b (5.2)

occur naturally in model order reduction.
These moments (5.2) appear in the Gram matrices associated with rational Krylov
subspaces. The Gram matrix Mk ∈ Ck×k for a single subspace Kk(A, v; Ξ) is

Mk = (BΞ
k )HBΞ

k ,

with the Krylov basis BΞ
k , span{BΞ

k } = Kk(A, v; Ξ). In general this matrix contains k
moments, and if AH = A it contains 2k − 1 moments.
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For the pair of subspaces Kk(A, v; Ξ) and Kk(AH , w; Θ), the Gram matrix is

Mk = (BΘ
k )HBΞ

k ,

with Krylov bases BΞ
k and BΘ

k , span{BΞ
k } = Kk(A, v; Ξ) and span{BΘ

k } =
Kk(AH , w; Θ). This Gram matrix always contains 2k − 1 moments.

5.2 Displacement structure

Gram matrices arise in many applications [116, 134], and often have a certain
displacement structure. For matrices with low displacement rank specialized algorithms
can be developed: fast algorithms with complexity O(m2), and superfast algorithms,
with complexity O(m(logm)2) [99, 116, 134]. Krylov matrices and rational Krylov
matrices have low displacement rank. Gram matrices arising from Krylov subspaces are
composed of the product of two Krylov matrices and might exhibit some displacement
structure as well. The analysis of the displacement structure of Gram matrices is the
main topic of this section.
The following discussion relies heavily on two well-known matrices with displacement
structure, the Vandermonde and Hankel matrices. Section 5.2.1 introduces these and
shows how they are related to each other. Polynomial Krylov matrices are intimately
related to these matrices. The relations are discussed in Section 5.2.2. Section 5.2.3
generalizes the approach used for polynomial Krylov to Gram matrices for rational
Krylov subspaces. A procedure to construct suitable displacement operators for any
Gram matrix, arising from rational Krylov subspaces, is described.

5.2.1 Basics

Two ’classical’ matrices with displacement structure are central to the analysis of
displacement structure in Krylov matrices. These are the Vandermonde and Hankel
matrix. A Vandermonde matrix Vk ∈ Cm×k generated by {λi}mi=1 is

Vk =

1 λ1 . . . λk−1
1

...
...

...
1 λm . . . λk−1

m

 .
A Vandermonde matrix exhibits low displacement rank, see Lemma 5.1.
Lemma 5.1 (Displacement rank: Vandermonde matrix [134]). A Vandermonde matrix

Vk =

1 λ1 . . . λk−1
1

...
...

...
1 λm . . . λk−1

m
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has displacement rank smaller than or equal to 1.

Proof. The only difficulty is to find suitable displacement operators. These are the
diagonal matrix Λ = diag({λi}mi=1) ∈ Cm×m and leftshift matrix Zk ∈ Ck×k. Then

ΛVk − VkZk =

 λk1

0
...
λkm

 ,
which has rank 1.

A Hankel matrix Hk ∈ Ck×k has constant anti-diagonals

Hk =


h0 h1 h2 . . . hk−1
h1 h2 h3 . . . hk
h2 h3 h4 . . . hk+1
...

...
... ··

· ...
hk−1 hk hk+1 . . . h2k−2

 .
The Hankel matrices of interest here are formed by Vandermonde matrices, for some
diagonal matrix D = diag(d1, . . . , dm),

Hk = V >k DVk.

This relation is useful to link properties of both matrices, such as condition number,
to each other [107, 159]. Hankel matrices have low displacement rank, as stated in
Lemma 5.2.
Lemma 5.2 (Displacement rank: Hankel matrix [134]). A Hankel matrix

Hk =


h0 h1 h2 . . . hk−1
h1 h2 h3 . . . hk
h2 h3 h4 . . . hk+1
...

...
... ··

· ...
hk−1 hk hk+1 . . . h2k−2


has displacement rank smaller than or equal to 2.

Proof. Consider the leftshift matrix Zk ∈ Ck×k, then

ZHk Hk −HkZk =


hk

0
...

h2k−2
−hk . . . −h2k−2 0

 ,
which has rank at most 2.
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The displacement structure of Hk = V >k DVk can be explained by the displacement
rank of Vk. Consider the relations that exist for DVk and V >k for the leftshift matrix
Zk ∈ Cm×m and Λ := diag(λ1, . . . , λm),

ΛDVk −DVkZk =

 d1λ
k
1

0
...

dmλ
k
m

 , Z>k V
>
k − V >k Λ> =

[
0

−λk1 . . . −λkm

]
.

Use the second relation, postmultiply by DVk, and use the first relation

Z>k V
>
k DVk − V >k Λ>DVk =

[
0

−λk1 . . . −λkm

]
DVk

Z>k Hk − V >k DΛVk =
[

0
−
∑
i diλ

k
i . . . −

∑
i diλ

2k−1
i

]

Z>k Hk −HkZk =


∑
i diλ

k
i

0
...∑

i diλ
2k−2
i

−
∑
i diλ

k
i . . . −

∑
i diλ

2k−2
i 0

 .
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5.2.2 Polynomial Krylov subspaces

Corollary 5.1 states that a Krylov matrix Bk forming the Krylov basis for Kk(A, v)
with a diagonalizable matrix A has low displacement rank. This follows from its
relation to a Vandermonde matrix.

Corollary 5.1. Consider the Krylov matrix Bk ∈ Cm×k of a Krylov subspace Kk(A, v)
for a diagonalizable matrix A ∈ Cm×m. Then Bk has displacement rank less than or
equal to one.

Proof. Start from Lemma 5.1 and adjust the displacement matrices, based on the factor-
ization of Bk used in the proof of Theorem 3.1. Consider the eigendecomposition A =

XΛX−1 and, for αi := e>i (X−1v), Bk = X

α1
. . .

αm


︸ ︷︷ ︸

=:W

1 λ1 . . . λk−1
1

...
...

...
1 λm . . . λk−1

m


︸ ︷︷ ︸

=:Vk

.

Then

XWΛVk = XΛX−1XWVk = ABk

and

ABk −BkZk = XW (ΛVk − VkZk) = XW

λ
k
1
...
λkm

 e>k ,
which has rank equal to 1. When k = g, the grade of v with respect to A, then
it follows from Corollary 3.2 that ABg − BgC has rank 0, with C the companion
matrix.

Note that Corollary 5.1 describes a property that follows immediately from the Krylov
recurrence relation in Lemma 3.1.

Orthogonal basis

Since a Krylov matrix Bk is related to a Vandermonde matrix, the associated Gram
matrix Mk = BHk Bk might be related to a Hankel matrix. Lemma 5.3 states that
the Gram matrix Mk for a Krylov subspace has Hankel structure when the space is
generated for a Hermitian matrix AH = A.

Lemma 5.3 (Gram matrix: single polynomial Krylov subspace). The Gram matrix
Mk for Kk(A, v) is of the form Hk = V >k DVk if and only if AH = A.
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Proof. Let A = XΛX−1, and Bk =
[
v,Av, . . . , Ak−1v

]
= XWVk as in the proof of

Corollary 5.1, then
Mk = BHk Bk = V Hk WHXHXWVk.

For a Hermitian matrix A one has XHX = I and D = WHW ∈ Rm×m is diagonal
and positive semidefinite, thus

Mk = V Hk DVk.

Hence, Mk = V >k DVk if and only if V >k = V Hk or, equivalently, λ̄i = λi.

Let us look at the moments appearing in the Gram matrix Mk for a Krylov subspace
K(A, v). The inner product on Krylov subspaces is the Euclidean inner product 〈., .〉E .
For AH = A the property 〈Ax, y〉E = 〈x,Ay〉E is satisfied. Then Mk is the Hankel
matrix built with the first 2k − 1 moments of A, mj = vHAjv = 〈Ajv, v〉E ,

Mk =


〈v, v〉E 〈Av, v〉E 〈A2v, v〉E . . . 〈Ak−1v, v〉E
〈v,Av〉E 〈Av,Av〉E 〈A2v,Av〉E . . . 〈Ak−1v,Av〉E
〈v,A2v〉E 〈Av,A2v〉E 〈A2v,A2v〉E . . . 〈Ak−1v,A2v〉E

...
...

...
...

〈v,Ak−1v〉E 〈Av,Ak−1v〉E 〈A2v,Ak−1v〉E . . . 〈Ak−1v,Ak−1v〉E



=


〈v, v〉E 〈Av, v〉E 〈A2v, v〉E . . . 〈Ak−1v, v〉E
〈Av, v〉E 〈A2v, v〉E 〈A3v, v〉E . . . 〈Akv, v〉E
〈A2v, v〉E 〈A3v, v〉E 〈A4v, v〉E . . . 〈Ak+1v, v〉E

...
...

...
...

〈Ak−1v, v〉E 〈Akv, v〉E 〈Ak+1v, v〉E . . . 〈A2k−2v, v〉E

 .

For nonnormal matrices AHA 6= AAH , only the first k moments of the matrix A
appear in Mk,

Mk =


〈v, v〉E 〈Av, v〉E . . . 〈Ak−1v, v〉E
〈v,Av〉E 〈Av,Av〉E . . . 〈Ak−1v,Av〉E

...
...

...
〈v,Ak−1v〉E 〈Av,Ak−1v〉E . . . 〈Ak−1v,Ak−1v〉E



=


〈v, v〉E 〈Av, v〉E . . . 〈Ak−1v, v〉E
〈AHv, v〉E 〈AHAv, v〉E . . . 〈AHAkv, v〉E

...
...

...
〈(AH)k−1v, v〉E 〈(AH)k−1Av, v〉E . . . 〈(AH)k−1Ak−1v, v〉E

 .
The terms in Mk, where AH appears in the first term of the inner product, do not
have a connection to moment matching of the matrix A [124, p.153].
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For normal matrices AHA = AAH , or equivalently AH = pl(A) for some polynomial
pl of degree l, the Gram matrix has a displacement rank at most l. This is a result on
short recurrence relations by Faber and Manteuffel [62].

Biorthogonal bases

Two Krylov matrices, Bk and B̃k, for K(A, v) and K(AH , w), respectively, lead to
a Gram matrix with Hankel structure Hk = V >k DVk. Lemma 5.4 formalizes this
statement.

Lemma 5.4 (Gram matrix: pair of polynomial Krylov subspaces). Let A be
a diagonalizable matrix. Consider Krylov subspaces K(A, v) and K(AH , w), with
〈v, w〉E 6= 0 and corresponding Krylov matrices Bk and B̃k. Then the associated Gram
matrix Mk = B̃Hk Bk is a Hankel matrix of the form V >k DVk, with diagonal matrix D.

Proof. Write out the columns of the Krylov matrices, and use Ṽk = V k, then

Mk = B̃Hk Bk = Ṽ Hk W̃HX−1XWVk = V >k DVk,

with D = W̃HW diagonal and indefinite.

The Gram matrix Mk = B̃Hk Bk contains the first 2k − 1 moments of the matrix A,
mj = wHAjv = 〈Av,w〉E ,

Mk =


〈v, w〉E 〈Av,w〉E . . . 〈Ak−1v, w〉E
〈v,AHw〉E 〈Av,AHw〉E . . . 〈Ak−1v,AHw〉E

...
...

...
〈v, (AH)k−1w〉E 〈Av, (AH)k−1w〉E . . . 〈Ak−1v, (AH)k−1w〉E



=


〈v, w〉E 〈Av,w〉E 〈A2v, w〉E . . . 〈Ak−1v, w〉E
〈Av,w〉E 〈A2v, w〉E 〈A3v, w〉E . . . 〈Akv, w〉E
〈A2v, w〉E 〈A3v, w〉E 〈A4v, w〉E . . . 〈Ak+1v, w〉E

...
...

...
...

〈Ak−1v, w〉E 〈Akv, w〉E 〈Ak+1v, w〉E . . . 〈A2k−2v, w〉E

 ,

thanks to the fact that the second Krylov subspace is constructed using AH . Whereas
in the orthogonal case, we needed AH = A to obtain this property.
The low displacement rank ofMk for any diagonalizable matrix A explains the existence
of a pair of short recurrence relations for biorthogonal bases for the Krylov subspaces
Kk(A, v) and Kk(AH , w).
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5.2.3 Rational Krylov subspaces

A rational Krylov matrix BΞ
k ∈ Cm×k, related to the rational Krylov subspace

K(A, v; Ξ) for a diagonalizable A ∈ Cm×m, is also related to a Vandermonde matrix
Vk ∈ Cm×k. The relation between BΞ

k and Vk is given by

BΞ
k = XWΦVkJL̂LP>, (5.3)

with the variables that appeared in the proof of Theorem 4.1:

• X the eigenvector matrix of A, i.e., A = XΛX−1 with Λ = diag(λ1, . . . , λm),

• W = diag({αi}i), where αi := e>i (X−1v), i = 1, 2, . . . ,m,

• Φ = diag({φk−(λi)}) and nonsingular, where φk−(z) is the denominator of
highest degree appearing in Kk(A, v; Ξ) (see Definition 4.2),

• J =

 1
··
·

1

,
• L̂ and L are unit lower triangular matrices,

• P is a permutation matrix which orders the columns of BΞ
k by decreasing degree.

The low displacement rank of rational Krylov matrices is stated in Corollary 5.2.
Corollary 5.2. Consider the rational Krylov matrix BΞ

k of a rational Krylov subspace
Kk(A, v; Ξ) for a diagonalizable matrix A ∈ Cm×m. Then BΞ

k has displacement rank
less than or equal to one.

Proof. Start from Lemma 5.1 and adjust the displacement matrices, using the
decomposition (5.3). Consider the eigendecomposition A = XΛX−1 and, for

αi := e>i (X−1v), BΞ
k = X

α1
. . .

αm


︸ ︷︷ ︸

=:W

Φ

1 λ1 . . . λk−1
1

...
...

...
1 λm . . . λk−1

m


︸ ︷︷ ︸

=:Vk

JL̂LP . Since

S := JL̂LP is nonsingular, we have
XWΦ(ΛVk − VkZk)S = AXWΦVk −XWΦVkSZ̃k,

where Z̃k = S−1ZkS. Thus the displacement matricesA and Z̃k reveal the displacement
rank, which is smaller than or equal to 1 since rank(ΛVk − VkZk) ≤ 1.

Note that the Z̃k in the proof of Corollary 5.2 is the single matrix representation for
the Krylov recurrence relation, i.e., a rational Hessenberg matrix.



DISPLACEMENT STRUCTURE 95

Orthogonal basis

A Gram matrix related to a single rational Krylov subspace K(A, v; Ξ) with AH = A
has low displacement rank, see Lemma 5.5.

Lemma 5.5 (Gram matrix: single rational Krylov subspace). Let BΞ
k ∈ Cm×k be the

Krylov matrix of K(A, v; Ξ) for a matrix A ∈ Cm×m. The associated Gram matrix
Mk = (BΞ

k )HBΞ
k has displacement rank less than or equal to 2 if and only if AH = A.

Proof. The proof of Lemma 5.3 holds when D = ΦHWHWΦ is chosen, and therefore

Mk = (BΞ
k )HBΞ

k = PLH L̂HJV Hk ΦHWHXHXWΦVkJL̂LP>

= PLH L̂HJV >k ΦHWHWΦ︸ ︷︷ ︸
=:D

VkJL̂LP
>

= PLH L̂HJHkJL̂LP
>.

Thus, Mk has displacement rank less than or equal to 2 since Hk has displacement
rank less than or equal to 2.

The Gram matrix for K(A, v; Ξ), with AH = A, hides a Hankel matrix of the form
V >k DVk. The diagonal matrix D now includes the matrix Φ. This points to a rational
modification of the underlying inner product [108, 192]. Chapter 7 discusses the
rational modification of inner products.

Biorthogonal bases

For the biorthogonal setting, i.e., a Gram matrix Mk = (BΘ
k )HBΞ

k , with BΞ
k a nested

basis for Kk(A, v; Ξ) and BΘ
k for Kk(AH , w; Θ), always has low displacement rank. In

Lemma 5.6 the poles Ξ and Θ can be chosen completely independent from each other.

Lemma 5.6 (Gram matrix: pair of rational Krylov subspaces). Let A ∈ Cm×m be a
diagonalizable matrix. Consider Kk(A, v; Ξ) and Kk(AH , w; Θ), with 〈v, w〉E 6= 0 and
corresponding Krylov matrices BΞ

k , B
Θ
k ∈ Cm×k. Then the associated Gram matrix

Mk = (BΘ
k )HBΞ

k has displacement rank less than or equal to 2.
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Proof. The decompositions as in Equation (5.3) will be used, where V̄k is the complex
conjugate of Vk:

BΞ
k = XWΦVkJ L̂L︸︷︷︸

=:LΞ

P>,

BΘ
k = X−HW̃ Φ̃V̄kJ L̂L︸︷︷︸

=:LΘ

P̃>.

The Gram matrix is

Mk = (BΘ
k )HBΞ

k = P̃ (LΘ)HJV >k Φ̃HW̃H X−1X︸ ︷︷ ︸
=I

WΦVkJLΞP>

and settingD := Φ̃HW̃HWΦ reveals the Hankel matrixHk = V >k DVk in the expression

Mk = P̃ (LΘ)HJHkJL
ΞP>.

Starting from the displacement operators for Hk, leftshift Zk such that ZHk Hk−HkZk
has rank 2, the displacement operators ZΘ

k , ZΞ
k for Mk are determined:

P̃ (LΘ)HJ(ZHk Hk −HkZk)JLΞP>

= P̃ (LΘ)HJZHk HkJL
ΞP> − P̃ (LΘ)HJHkZkJL

ΞP>

= (ZΘ
k )H P̃ (LΘ)HJHkJL

ΞP> − P̃ (LΘ)HJHkJL
ΞP>ZΞ

k

Hence,Mk has displacement rank less than or equal to 2 for the displacement operators

ZΞ
k = P (LΞ)−1JZJLΞP>, ZΘ

k = P̃ (LΘ)−1JZJLΘP̃>.

These exist since LΞ and LΘ are unit lower triangular matrices and P, P̃ permutation
matrices.

This result suggests short (three term) recurrence relations for biorthogonal bases for
rational Krylov subspaces, i.e., exactly the result obtained in Section 4.4.2.

Toeplitz matrix

The result from Lemma 5.6 allows us to derive a well known result for Toeplitz matrices.
Displacement rank was first used for Toeplitz matrices [115], and later generalized to,
among others, Hankel, Vandermonde, and Cauchy matrices [134]. Toeplitz matrices
arise naturally in many applications [116] and also as the Gram matrix for a polynomial
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Krylov subspace K(U, v), with a unitary matrix U ∈ Cm×m. Consider Bk, the Krylov
matrix for Kk(U, v), and its Gram matrix

Mk = BHk Bk =


〈v, v〉E 〈Uv, v〉E . . . 〈Uk−1v, v〉E
〈v, Uv〉E 〈Uv,Uv〉E . . . 〈Uk−1v, Uv〉E

...
... . . . ...

〈v, Uk−1v〉E 〈Uv,Uk−1v〉E . . . 〈Uk−1v, Uk−1v〉E



=


〈v, v〉E 〈Uv, v〉E 〈U2v, v〉E . . . 〈Uk−1v, v〉E
〈U−1v, v〉E 〈v, v〉E 〈Uv, v〉E . . . 〈Uk−2v, v〉E
〈U−2v, v〉E 〈U−1v, v〉E 〈v, v〉E . . . 〈Uk−3v, v〉E

...
...

... . . . ...
〈U−(k−1)v, v〉E 〈U−(k−2)v, v〉E 〈U−(k−3)v, v〉E . . . 〈v, v〉E



=


t0 t1 t2 . . . tk−1
t−1 t0 t1 . . . tk−2
t−2 t−1 t0 . . . tk−3
...

...
... . . . ...

t−(k−1) t−(k−2) t−(k−3) . . . t0

 =: Tk.

A unitary matrix is normal, UHU = I = UUH , however, the polynomial Krylov
interpretation does not allow us to conclude that Tk has displacement rank 2 or even
low displacement rank. However, the isometric Arnoldi provides coupled two-term
recurrence relations which construct an orthogonal basis for Kk(U, v) [111, 188]. This
suggests that Tk does have low displacement rank, namely,

rank
(
JZHk JTk − TkZk

)
≤ 2. (5.4)

The reason is that restricting to polynomial Krylov subspaces corresponds to restricting
the recurrence relation to be of the form related to AH = p(A), i.e.,

Avk =
k+1∑
i=k−l

civi,

where l + 1 is the amount of terms in the recurrence relation.
A recurrence relation corresponding to rational Krylov subspaces is of the form

k+1∑
i=k−l̃

c̃iAvi =
k+1∑
i=k−l

civi.

This is related to AH = rl(A), where the rational function rl(z) = pl(z)
ql(z) , with pl, ql

polynomials of at most degree l [123]. For the above example, UH = r1(U), with
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r1(z) = z−1 and thus short recurrence relations exist [188].
The rational framework allows to obtain the result (5.4). The Krylov basis for
a unitary matrix is interpreted as a pair of rational (extended) Krylov subspaces,
which allows to derive the displacement structure of Tk. Since UH = U−1, we have
Kk(U, v) = Kk(U−1, v) = Kk(U, v; {0, 0, . . . }). Consider BΞ

k , the Krylov matrix for
Kk(U, v; {∞,∞, . . . }) and BΘ

k for Kk(U, v; {0, 0, . . . }) and their decompositions, with
U = XΛXH and UH = U−1 = XΛ−1XH ,

BΞ
k =

[
v Uv . . . Uk−1v

]
= XWVk

BΘ
k =

[
v U−1v . . . U−(k−1)v

]
= XWΦV̄kJ

with W = diag({XHvei}mi=1) and Φ = diag({φk−(λi)}mi=1) for φk−(z) = z−(k−1). The
Gram matrix Mk = (BΘ

k )HBΞ
k is the Toeplitz matrix Tk from before and

Tk = (BΘ
k )HBΞ

k = JV >k ΦWHW︸ ︷︷ ︸
=:D

Vk = JHk

reveals the well known relation between a Toeplitz and Hankel matrix and allows to
conclude that Tk has the same displacement rank as Hk. Displacement operators for
Tk follow easily from this relation

J(ZHk Hk −HkZk) = JZHk JJHk − JHkZk = JZHk JTk − TkZk.

Construct permutation matrix

The construction of the permutation matrix P in (5.3) from the poles Ξ is
straightforward. Algorithm 5 provides the procedure.

This procedure is illustrated by Example 5.1.

Example 5.1. Consider m ≥ 8, v =
[
α1 . . . αm

]> ∈ Cm and Λ =
diag(λ1, . . . , λm) ∈ Cm×m. Let Ξ̂ = {0,∞,∞, 0,∞, 0, 0}. The Krylov matrix is

BΞ
k =

[
v Λ−1v Λv Λ2v Λ−2v Λ3v Λ−3v Λ−4v

]
.

The matrix Φ = Λ−4 and P ∈ C8×8, as constructed by Algorithm 5 is

P> =
[
e8 e7 e5 e2 e1 e3 e4 e6

]
.

And, indeed, this forms the decomposition from (5.3):

BΞ
k =

α1
. . .

αm

Λ−4

1 λ1 . . . λ7
1

...
...

...
1 λm . . . λ7

m

P>.



GENERATING (BI)ORTHOGONAL VECTORS 99

Algorithm 5 Construct permutation matrix
1: Input: Ξ = {ξi}k−1

i=1
2: Output: P ∈ Ck×k appearing in (5.3) associated with given Ξ
3: procedure ConstructPermutationMatrix(Ξ)
4: P := 1
5: for i = 1, 2, . . . , k − 1 do

6: P =
[
P
0

]
. Embed P in Ci+1 by appending a zero row

7: if ξi ==∞ then
8: P =

[
P ei+1

]
9: else

10: P =
[
ei+1 P

]
11: end if
12: end for
13: P = P>

14: end procedure

5.3 Generating (bi)orthogonal vectors

Orthonormal and biorthonormal nested bases for rational Krylov subspaces can be
generated using the associated Gram matrix. Lemma 2.2 states that computing the LR
factorization of a Gram matrix corresponds to computing the recurrence coefficients
of biorthonormal vectors. In finite precision two issues are encountered with this
procedure:

1. The LR factorization without pivoting is numerically unstable. Pivoting is not
allowed, since this would destroy the nestedness of the bases formed by the
vectors.

2. The Gram matrix with classical moments is ill-conditioned.

The numerical instability of computing the LR factorization, the first issue, can be
dealt with straightforwardly for Hermitian positive definite Gram matrices. For a
Hermitian positive definite Gram matrix Mk ∈ Ck×k, the Cholesky decomposition
Mk = RHk Rk can be used. The Cholesky factor Rk corresponds to the triangular
factor in the QR decomposition of BΞ

k = QkRk, if Mk = (BΞ
k )HBΞ

k , with rational
Krylov matrix BΞ

k ∈ Cm×k. The QR decomposition can be computed stably, but the
ill-conditioning of the rational Krylov matrix remains an issue. However, rational
Krylov subspace methods avoid the explicit construction of this matrix and generate
the orthonormal vectors, that is, the matrix Qk and their representation as a recurrence
pencil. The recurrence pencil representation is preferred over the representation in a
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basis by the matrix R.
For Gram matrices that do not allow a Cholesky decomposition, methods based on
Krylov subspaces, will improve the stability and avoid explicit construction of the
ill-conditioned moment or Krylov matrices. Chapter 9 elaborates on methods for the
construction of (bi)orthonormal vectors based on Krylov subspaces.
The conditioning of the Gram matrix, the second issue, also can be improved by using
modified moments. An updating strategy is proposed in Section 5.3.1. This technique
uses modified moments. The updating idea is important in Chapter 9. Section 5.3.2
discusses Levinson procedures, which uses low displacement rank of Gram matrices to
obtain efficient algorithms for the (implicit) computation of their LR factorization.
Levinson procedures are discussed further in Chapter 8, where they are used to obtain
short recurrence relations for (bi)orthogonal vectors.

5.3.1 Updating Gram matrix factorization

For simplicity we discuss the updating procedure for Krylov subspaces generated
by a diagonal matrix A = Λ = diag(λ1, . . . , λm). As we will see in Chapter 6 and
Chapter 7, this is an important case. Consider starting vectors v =

[
α1 . . . αm

]>,
w =

[
β1 . . . βm

]> and the rational Krylov matrices

BΞ
k =

[
v ψΞ

1 (Λ)v . . . ψΞ
k−1(Λ)v

]
=

α1 ψΞ
1 (λ1)α1 . . . ψΞ

k−1(λ1)α1
...

...
...

αm ψΞ
1 (λm)αm . . . ψΞ

k−1(λm)αm

 ,
such that span{BΞ

k } = K(Λ, v; Ξ) and

BΘ
k =

[
w ψΘ

1 (ΛH)w . . . ψΘ
k−1(ΛH)w

]

=

β1 ψΘ
1 (λ̄1)β1 . . . ψΘ

k−1(λ̄1)β1
...

...
...

βm ψΘ
1 (λ̄m)βm . . . ψΘ

k−1(λ̄m)βm

 ,
with span{BΘ

k } = K(ΛH , w; Θ). Suppose that for a Gram matrix Mk = (BΞ
k )HBΞ

k or
Mk = (BΘ

k )HBΞ
k the LR factorization is available, i.e., Mk = LkRk. We are interested

in the LR factorization of M̃k, the Gram matrix for Krylov subspaces generated with
Λ̃ =

[
Λ

λm+1

]
, ṽ =

[
v

αm+1

]
and, possibly, w̃ =

[
w

βm+1

]
. This Gram matrix satisfies

M̃k = Mk + M̂k, with rank(M̂k) = 1. The updating procedure reuses the factorization
of Mk to compute the factorization of M̃k. The factorization of Mk = LkRk can be
reused by noting that

M̃k = Mk + M̂k ⇔ L̃kR̃k = LkRk + M̂k ⇔ L−1
k L̃kR̃kR

−1
k = I + L−1

k M̂kR
−1
k .
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The only factorization that must be computed is I + L−1
k M̂kR

−1
k = L̂kR̂k and the

solution is obtained by L̃k = LkL̂k and R̃k = R̂kRk.

Single space

Consider a Gram matrix corresponding to a single rational Krylov subspace Kk(Λ, v; Ξ):

Mk = (BΞ
k )HBΞ

k

=


〈v, v〉E 〈ψΞ

1 (Λ)v, v〉E . . . 〈ψΞ
k−1(Λ)v, v〉E

〈v, ψΞ
1 (Λ)v〉E 〈ψΞ

1 (Λ)v, ψΞ
1 (Λ)v〉E . . . 〈ψΞ

k−1(Λ)v, ψΞ
1 (Λ)v〉E

...
...

...
〈v, ψΞ

k−1(Λ)v〉E 〈ψΞ
1 (Λ)v, ψΞ

k−1(Λ)v〉E . . . 〈ψΞ
k−1(Λ)v, ψΞ

k−1(Λ)v〉E

 .
The Gram matrix M̃k = (B̃Ξ

k )HB̃Ξ
k corresponding to Kk(Λ̃, ṽ; Ξ) with basis B̃Ξ

k =[
v ψΞ

1 (Λ̃)ṽ . . . ψΞ
k−1(Λ̃)ṽ =

]
is equal to

M̃k = Mk + |αm+1|2


1

ψ̄Ξ
1 (λ̄m+1)

...
ψ̄Ξ
k−1(λ̄m+1)

 [1 ψΞ
1 (λm+1) . . . ψΞ

k−1(λm+1)
]
.

The Cholesky factorization of

I + |αm+1|2R−Hk


1

ψ̄Ξ
1 (λ̄m+1)

...
ψ̄Ξ
k−1(λ̄m+1)

 [1 ψΞ
1 (λm+1) . . . ψΞ

k−1(λm+1)
]
R−1
k

must be computed. In this equation we see that this in fact uses modified moments,
using the orthonormal basis for K(Λ, v; Ξ). We will not discuss the implementation
and numerical properties further. Details can be found in the paper by Gill et al., [86].
Alternatively, the QR decomposition can be used. If the QR decomposition of BΞ

k is
available,

BΞ
k =

α1 ψΞ
1 (λ1)α1 . . . ψΞ

k−1(λ1)α1
...

...
...

αm ψΞ
1 (λm)αm . . . ψΞ

k−1(λm)αm

 = QkRk,

then using the embedded matrix Q̂k =
[
Qk

1

]
, we get

Q̂Hk B̃
Ξ
k =

[
Rk

αm+1 ψΞ
1 (λm+1)αm+1 . . . ψΞ

k−1(λm+1)αm+1

]
=
[
Rk
x

]
=: R̂k,
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with x = QHk
[
αm+1 ψΞ

1 (λm+1)αm+1 . . . ψΞ
k−1(λm+1)αm+1

]
. The matrix R̂k

deviates from an upper triangular matrix only by its last row. Premultiplication with
a sequence of plane rotations can restore the upper triangular structure efficiently and
leads to a QR decomposition of M̃k. Details can be found in the literature [25, 50, 86].

Pair of spaces

A Gram matrix corresponding to a pair of rational Krylov subspaces K(Λ, v; Ξ) and
K(ΛH , w; Θ) has the form

Mk = (BΘ
k )HBΞ

k =


〈v, w〉E . . . 〈ψΞ

k−1(Λ)v, w〉E
〈v, ψΘ

1 (ΛH)w〉E . . . 〈ψΞ
k−1(Λ)v, ψΘ

1 (ΛH)w〉E
...

...
〈v, ψΘ

k−1(ΛH)w〉E . . . 〈ψΞ
k−1(Λ)v, ψΘ

k−1(ΛH)w〉E

 .
Suppose its LR factorization is available, Mk = LkRk. The updated Gram matrix is

M̃k = (B̃Θ
k )HB̃Ξ

k

= Mk + β̄m+1αm+1


1

ψ̄Θ
1 (λm+1)

...
ψ̄Θ
k−1(λm+1)

 [1 ψΞ
1 (λm+1) . . . ψΞ

k−1(λm+1)
]
,

and only the LR factoriation of

I + β̄m+1αm+1L
−1
k


1

ψ̄Θ
1 (λm+1)

...
ψ̄Θ
k−1(λm+1)

 [1 ψΞ
1 (λm+1) . . . ψΞ

k−1(λm+1)
]
R−1
k

must be computed to obtain the LR factorization of M̃k. Details can be found in the
paper by Bennet [15].

5.3.2 Levinson procedure

The LR factorization of Gram matrices with low displacement rank can be efficiently
computed by Levinson procedures by studying its displacement structure. This results
in short recurrence relations for (bi)orthogonal vectors related to the considered Gram
matrix. The derivation of short recurrence relations is postponed to Chapter 8, since
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having results from Chapter 6 and Chapter 7 facilitates the description of the Levinson
procedures. Now, only the idea behind these procedures is sketched.
Set Mk = ḂHk Bk, with Bk, Ḃk ∈ Cm×k which can represent a basis for a single Krylov
subspace Bk = Ḃk = BΞ

k or for a pair of Krylov subspace Bk = BΞ
k , generated with

some matrix A, and Ḃk = BΘ
k , generated with AH .

Suppose Mk has low displacement rank. A Levinson procedure assumes (implicit)
knowledge of the LR factorization of Mk = LkRk. From these factors we can obtain
the (bi)orthonormal vectors {vi}ki=1 and {wi}ki=1. Note that

Mkvk =


0
...
0
×

 and wHk Mk =
[
0 · · · 0 ×

]
. (5.5)

An efficient way to obtain the next vectors in the (bi)orthonormal sequence, vk+1, wk+1,
is derived. The Gram matrix is

Mk+1 = ḂHk+1Bk+1 =
[
Mk m
m̂H µ

]
,

where m, m̂ ∈ Ck and µ ∈ C. Studying the structure of the multiplication of Mk+1

with v̇k :=
[

0
vk

]
, an embedding of vk in Ck+1, allows the derivation of recurrence

relations. Another possible embedding is
[
vk
0

]
. If Mk+1 has displacement rank 2, we

expect no more than 3 nonzero elements appearing in the vector Mk+1v̇k. With the
embedding of the available vectors {vi}ki=1, a linear combination vk+1 is sought such
that Mk+1vk+1 = ηek+1, for some nonzero constant η. For details on the Levinson
procedure for Toeplitz and Hankel matrices we refer the survey paper by Heinig and
Rost [99] and references therein.

5.4 Conclusion

A meaningful generalization of moments is described which is related to rational Krylov
subspaces. The displacement structure of Gram matrices for rational Krylov subspaces
is studied and suitable displacement operators are proposed. This reveals the low
displacement rank of Gram matrices; certain Gram matrices have displacement rank
at most 2. We show that these are Gram matrices arising from normal matrices and a
single rational Krylov subspace or from a diagonalizable matrix and a pair of rational
Krylov subspaces. Displacement rank equal to 2 suggests the existence of three term
recurrence relations for the construction of (bi)orthonormal nested bases for rational
Krylov subspaces. Two procedures to generate (bi)orthonormal nested bases from a
Gram matrix are discussed.





Chapter 6

Orthogonal polynomials

The interplay between Krylov subspaces (matrix theory) and orthogonal polynomials
(classical analysis) is fruitful in both directions. Classical analysis is an older
discipline and many theoretical results are known for orthogonal polynomials (OPs)
[43,110,154,157]. Potential theory for orthogonal polynomials can be used to study
convergence results for Krylov subspace methods [100,119,120].
Matrix theory, numerical linear algebra, provides very effective procedures to solve
linear algebraic problems and provides a natural framework to study numerical
stability of algorithms and condition of problems. For numerical computation involving
polynomials, many of the most effective methods rely on solving an equivalent (or
approximate/discretized) problem in matrix theory [23,70,77,78,91,134]. Figure 6.1
shows the idea of solving functional problems (problems for functions, i.e., polynomials
in the current case) with linear algebraic methods schematically.

Functional
problem

Linear algebraic
problem

Equivalence

Linear algebraic
solution

Functional
solution

Solve

Equivalence

Figure 6.1: Solving functional problems with numerical linear algebra techniques.
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Some examples are the Golub-Welsch algorithm for the computation of weights and
nodes for Gaussian quadrature [91], the construction of orthogonal polynomials [78]
and computation of roots of polynomials [5, 23].
First, general polynomials and their relation to structured matrices are discussed in
Section 6.1. This allows us to represent polynomials as structured matrices, i.e.,
represent a functional solution as an equivalent algebraic solution. Orthogonal
polynomials enjoy many interesting, theoretical and numerical, properties. Polynomials
orthogonal to discrete inner products are related to certain Krylov subspaces, Section
6.2 introduces OPs and identifies the relation to Krylov subspace. Polynomials
orthogonal with respect a more general linear functional are formal orthogonal
polynomials [56], we interpret these as biorthogonal polynomials (biOPs). These
always satisfy a short recurrence relation but sacrifice some of the attractive properties
of OPs, e.g., the associated linear functional can be indefinite. Section 6.3 describes
biorthogonal polynomials and the relation to biorthonormal bases for Krylov subspaces.
These results allow the formulation of problems for (bi)orthogonal polynomials as
problems for structured matrices, most notably, inverse eigenvalue problems, which
are the subject of Chapter 9.

6.1 Polynomials and structured matrices

The connection between polynomials and vectors in (polynomial) Krylov subspaces
arises from the manner in which a Krylov subspace is constructed, multiplying
consecutive powers of A ∈ Cm×m with a starting vector v ∈ Cm

Kk(A, v) = span{v,Av,A2v, . . . , Ak−1v}.

A vector x ∈ Kk(A, v) can be written in terms of a polynomial pk−1 of degree at most
k − 1,

x = pk−1(A)v, pk−1 ∈ Pk−1,

where Pk−1 denotes the space of polynomials up to degree k− 1. When no breakdown
occurs, i.e., dim(Kl(A, v)) = l, l = 1, 2, . . . k, the recurrence relations for nested
Krylov, orthogonal and biorthogonal bases of Kk(A, v), discussed in Chapter 3, lead
to proper Hessenberg matrices. The sequence of polynomials {pi(z)}k−1

i=0 , pi ∈ Pi
and satisfying Kl(A, v) = span{p0(A)v, . . . , pl−1(A)v}, forms a triangle family of
polynomials. Section 6.1.1 elaborates on the relation between triangle families and
proper Hessenberg matrices, they are in fact equivalent. Evaluation of polynomials can
be reformulated as a problem involving a Hessenberg matrix, Section 6.1.2 proposes two
matrix theoretical formulations of polynomial evaluation. These Hessenberg matrices
related to triangle families are in fact congenial matrices. Section 6.1.3 provides a
short remark on such matrices and their relation to Krylov subspaces.
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6.1.1 Triangle family

Definition 6.1 introduces triangle families of polynomials whose relation to proper
Hessenberg matrices is elaborated on below.

Definition 6.1 (Triangle family of polynomials [49]). A triangle family of polynomials
{p0, p1, . . . , pk} is a sequence

p0(z) = γ1,0

p1(z) = γ1,1 + γ2,1z

p2(z) = γ1,2 + γ2,2z + γ3,2z
2

. . .

pk(z) = γ1,k + γ2,kz + γ3,kz
2 + · · ·+ γk+1,kz

k

where γi+1,i 6= 0 for all i.

Triangle families of polynomials have two important properties stated in Property 6.1.

Property 6.1 (Properties of triangle family of polynomials [49]). A triangle family
of polynomials {p0, . . . , pk} satisfies the following two properties

• Every triangle family of k + 1 members is a basis for Pk

• An l + 1-term recurrence relation zpl−1(z) =
∑l
i=0 hi+1,lpi(z), with hl+1,l 6= 0,

holds for l = 0, 1, . . . , k − 1.

The second property implies that a proper Hessenberg matrix Hk =
[
hi,j
]k
i,j=1 ∈ Ck×k

is the recurrence matrix for the relation

zPk = PkHk + hk+1,kpk(z)ek, (6.1)

with Pk :=
[
p0(z) p1(z) . . . pk−1(z)

]
, where {pi} forms a triangular family of

polynomials. This recurrence relation links the roots of polynomials with eigenvalues
of the recurrence matrix. Lemma 6.1 states this link formally.

Lemma 6.1 (Correspondence roots of polynomial and eigenvalues of recurrence
matrix [151]). Let {pi}k−1

i=0 be a triangular family and Hk ∈ Ck×k a proper Hessenberg
matrix such that (6.1) holds. Then the roots of pk(z) and the eigenvalues of Hk

coincide.
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Property 6.1 and Lemma 6.1 suggest that recurrence matrices for a nested basis of
a polynomial Krylov subspace can be used to study polynomials. In fact, knowing
Hk and p0 corresponds to knowing {p0, . . . , pk−1}, it is the matrix representation of
the polynomial sequence. In the sequel the polynomials must be evaluated, e.g., to
perform error analysis, and the preferred way is to use the matrix Hk. Section 6.1.2
describes how a polynomial can be evaluated when the recurrence matrix (the linear
algebraic solution) is available.

6.1.2 Evaluate polynomials

A triangular family of polynomials {p0, . . . , pk} with corresponding recurrence matrix
Hk satisfying (6.1) can be evaluated at a point z = z? by solving a linear system of
equations with Hk or by computing eigenvalues of Hk. These two procedures are
described here and for both the condition of the problem of polynomial evaluation is
provided.

Solve linear system

Polynomial evaluation can be formulated as an upper triangular linear system of
equations, which can be solved by forward substitution. Proposition 6.1 provides the
details.

Proposition 6.1 (Polynomial evaluation - system solve). Consider a triangle family
of polynomials {pi}ki=0 and corresponding recurrence matrix Hk ∈ Ck×k satisfying
(6.1). Then evaluating pi(z), i = 0, 1, . . . , k − 1 at z = z? ∈ C is equivalent to solving
the system of equations

x>


1
0
... (Hk − z?I)Ik×(k−1)

0
0

 =
[
p0 0 . . . 0

]

for x ∈ Ck and where Ik×(k−1) is the k × (k − 1) leading principal submatrix of the
identity matrix. Equivalent in the sense that xl := x>el = pl−1(z?).
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Proof. The equivalence follows directly from the fact that p0(z) is a known constant
and from recurrence relation (6.1). Clearly the statement holds for x1,

x>


1
0
...
0

 =
[
p0 0 · · · 0

]
⇔ x1 = p0.

For polynomials pl, 1 < l < k, the statement follows from the recurrence relation and
using commutativity of polynomials under multiplication,

z
[
p0 p1 · · · pk−1

]
=
[
p0 p1 · · · pk−1

]
Hk + hk+1,kpke

>
k

⇔
[
p0 p1 · · · pk−1

]
(zI −Hk) = hk+1,kpke

>
k .

Using the first k − 1 elements (dropping the kth element and thus the contribution
of hk+1,kpk) in the above equation allows to show the equivalence pl−1(z?) = xl,
1 < l < k.

Proposition 6.1 is the matrix notation of evaluating the recurrence relation (6.1). The
matrix notation allows to straightforwardly compute the condition of the problem of
polynomial evaluation. The condition is given by κ(G), with

G :=


1
0
... (Hn − z?I)In×(n−1)

0
0

 .

The matrix G depends on both Hn and z?. A structured condition number would be
more appropriate. This is subject to future research.

Eigenvalue decomposition

The eigenvalues of the recurrence matrix Hl ∈ Cl×l, 1 < l ≤ k, appearing in (6.1)
correspond to the roots of the polynomial pl. Thanks to the availability of effective
eigenvalue solvers, the eigenvalues of Hl, and thus the roots of pl(z), can be computed
efficiently and numerically stable. This allows us to write pl into the factored form
pl(z) = ηl

∏l
i=1(z − zi) and evaluate pl(z) using this form. Proposition 6.2 formalizes

this idea.
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Proposition 6.2 (Polynomial evaluation - eigenvalue decomposition). Consider a
triangle family of polynomials {pi}ki=0 and corresponding recurrence matrix Hk ∈ Ck×k,
which satisfies (6.1). Then, for l ≤ k,

pl(z) = ηl

l∏
i=1

(z − z(l)
i ),

where {z(l)
i }li=1 are the eigenvalues of the principal submatrix H(l)

k = Hl of size l × l
of Hk and ηl is determined by normalization.

Proof. The equivalence between the eigenvalues of H(l)
k , the l × l principal submatrix

of Hk, and the roots of pl follows from Lemma 6.1. Hence, pl(z) = ηlp̂l(z), with
p̂l(z) :=

∏l
i=1(z−z(l)

i ). For monic polynomials, ηl = 1 and for orthonormal polynomials
we have

〈pl, pl〉 = |ηl|2〈p̂l, p̂l〉

1 = |ηl|2〈p̂l, p̂l〉

|ηl|2 = (〈p̂l, p̂l〉)−1.

So the expression for pl(z) is completely determined.

For the condition of this evaluation procedure we note that multiplication of the
factors is a well-conditioned problem. Hence, the condition number of the eigenvalue
computation is assumed to dominate the condition of the problem. This condition
number is stated in Proposition 6.3. Only simple eigenvalues are considered, since
recurrence matrices originating from orthogonal and biorthogonal Krylov subspace
methods cannot have multiple eigenvalues.

Proposition 6.3 (Condition of a simple eigenvalue [90, p. 344]). Let λ be a simple
eigenvalue of A ∈ Cm×m and let x, y be vectors such that Ax = λx and yHA = λyH

with ‖x‖2 = ‖y‖2 = 1. The condition of the eigenvalue λ is given by

s(λ) = |yHx|−1. (6.2)

In practice, recurrence matrices originating from biorthogonal Krylov subspace
methods, including the Hermitian Lanczos iteration, might have multiple eigenvalues.
These might or might not correspond to actual multiple eigenvalues, e.g., a distinct
eigenvalue might be found multiple times due to the loss of orthogonality and round-off
errors, especially in the absence of reorthogonalization [46,47].
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6.1.3 Congenial matrix

Congenial matrices [7] represent a polynomial as a matrix in a certain basis. The
polynomial can be studied by studying its congenial matrix. The class of congenial
matrices include the companion matrix and, in fact, all recurrence matrices for a nested
basis of polynomial Krylov subspaces. The difference among these congenial matrices
is the basis with respect to which the polynomial is represented. The companion
matrix uses the monomial basis and corresponds to the recurrence matrix for the
Krylov recurrence relation. In the following sections the polynomial represented in an
orthogonal basis and in biorthogonal bases is elaborated on. These choices allow for
an efficient computation of the elements of the recurrence matrix.

6.2 Orthogonal polynomials

Just as for Krylov subspaces, it is interesting to consider an orthogonal basis for the
space of polynomials. A sequence of polynomials {pl}l is said to be orthogonal with
respect to some inner product 〈., .〉 : P × P → C if pl ∈ Pl, deg(pl) = l and

〈pi, pj〉

{
= 0, if i 6= j

> 0, if i = j
.

An inner product for complex valued functions f , g can be defined as

〈f, g〉 :=
∫
γ

f(z)g(z)α(z)|dz|,

where α(z) is a positive weight function and γ an arc [157]. Since z = ai + b is a
complex variable, by |dz| is meant the arc length, i.e., |dz| =

√
da2 + db2 [150]. Our

interest is in discrete inner products, introduced in Section 6.2.1. Section 6.2.2 about
the recurrence matrix for OPs, shows that the recurrence coefficients can be computed
by inner products. In some cases the orthogonal basis vectors for Krylov subspaces give
rise to OPs with respect to a discrete inner product, this is the topic of Section 6.2.3.
To conclude, Section 6.2.4 provides a short note on the Gram matrix associated with
OPs.

6.2.1 Discrete inner product

The discrete inner products considered in this thesis are:

〈f, g〉m :=
m∑
i=1

αif(zi)g(zi), zi ∈ C,
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with m distinct nodes {zi}mi=1 and positive weights {αi}mi=1. If we are interested in
polynomials orthogonal with respect to a continuous inner product, then it must first
be discretized. One way to discretize an inner product is via its first 2m− 1 moments

gi =
∫
γ

ziα(z)|dz|, i = 0, 1, . . . , 2m− 2,

which are finite. These moments can be used to define 〈., .〉m. For numerical
computation it is advised to use modified moments [78]

g̃i =
∫
γ

qk(z)α(z)|dz|, i = 0, 1, . . . , 2m− 2,

where qk is some polynomial of exact degree k. A usual choice is to use a sequence of
polynomials orthogonal with respect to another inner product over the same arc γ.
Another possible discretization is applying a suitable quadrature rule to the integral∫
γ
f(z)g(z)α(z)|dz| =

∑m
i=1 f(zi)g(zi)α(zi) +Rm, with Rm the error term [69,77,83,

150].
Good choices to discretize a continuous inner product depend on the specific problem.
We assume that the discretization has been done and a discrete inner product 〈., .〉m
is available.
Note that 〈., .〉m withm distinct nodes {zi} is only an inner product on the space Pm−1.
The positive-definiteness of 〈p, p〉m, p ∈ Pm does not hold. Let p =

∏m
i=1(z− zi), then

p(zi) = 0 for all i and therefore 〈p, p〉m = 0 for a nonzero polynomial. Hence, 〈., .〉m is
an indefinite Hermitian form on P.

6.2.2 Recurrence matrix

A sequence of orthogonal polynomials {pi} is obviously a triangle family of polynomials
and satisfies recurrence relation (6.1). The advantage of the recurrence relation for
orthogonal polynomials is that the recurrence coefficients can be computed by inner
products, this is stated in Lemma 6.2.

Lemma 6.2 (Recurrence matrix for orthogonal polynomials). Let 〈., .〉 : P × P → C
be an inner product and let {pi}ki=0 be the set of orthogonal polynomials with respect to
〈., .〉. Then the Hessenberg matrix Hk = [hi,j ]ki,j=1 in (6.1) is composed of the elements

hi,j = 〈zpj−1, pi−1〉
〈pi−1, pi−1〉

.

Proof. The statement follows immediately from the recurrence relation (6.1) and
properties of orthogonal polynomials, consider[

zp0 zp1 · · · zpk−1
]

=
[
p0 p1 · · · pk−1

]
Hk + hk+1,kpke

>
k ,
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and apply the inner product with pi(z), i < k, and use the orthogonality property,
then, for ei+1 the (i+ 1)st canonical unit vector,[

〈zp0,pi〉
〈pi,pi〉

〈zp1,pi〉
〈pi,pi〉 · · · 〈zpk−1,pi〉

〈pi,pi〉

]
= e>i+1Hk =

[
hi,0 . . . hi,k−1

]
.

Orthonormal polynomials are orthogonal polynomials satisfying 〈pi, pi〉 = 1.
The Stieltjes procedure generates a sequence of orthogonal polynomials {pi}i for
a given inner product 〈., .〉 and given p0. For a discrete inner product 〈f, g〉m =∑m
i=1 αif(zi)g(zi) the Stieltjes procedure is given in Algorithm 6. It computes

alternatingly recurrence coefficients for the next polynomial in the sequence of
orthogonal polynomials (Step 8) and evaluates this polynomial at the nodes of the
inner product (Step 9). For some discrete inner products 〈., .〉m, this procedure is
quite stable [69,77,79].

Algorithm 6 Stieltjes procedure [77]

1: Input: Nodes {zi}, weights {αi} determining 〈f, g〉m =
∑m
i=1 αif(zi)g(zi), and

p0 =
∑m
i=1 αi, and integer k < m

2: Set Z = diag({zi}) and W = diag({αi})
3: Output: Recurrence matrix Hk ∈ Ck×k and Qk ∈ Cm×k, with Qkei =[

pi−1(z1) . . . pi−1(zm)
]>, with QHk WQk = D, diagonal.

4: procedure Stieltjes procedure(p0, Z,W )
5: ρ0 =

[
p0 . . . p0

]
and ρ̃0 = Zρ0

6: for i = 1, 2, . . . , k − 1 do
7: for j = 1, 2, . . . , i do
8: hj,i = 〈zpi−1(z), pj−1〉m = ρHj−1Wρ̃i
9: ρ̃i = ρ̃i − hj,iρj−1

10: end for
11: ρi = hi+1,iρ̃i . hi+1,i is used for normalization
12: ρ̃i+1 = Zρi
13: end for
14: end procedure

Section 6.2.3 shows that the Stieltjes procedure corresponds to the Arnoldi iteration
in Algorithm 1 for a matrix A = Z = diag({zi}) and starting vector v =[√
α1 . . .

√
αm
]>. The Stieltjes procedure can be sensitive to round-off errors.

The advised numerical procedure is by solving an inverse eigenvalue problem. This is
the subject of Chapter 9.
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6.2.3 Inner product induced by Krylov basis

The similarity between the Arnoldi iteration, computing an orthonormal basis for
Krylov subspaces, and the Stieltjes procedure, computing orthogonal polynomials for
a given inner product, gives rise to the following question. When does the recurrence
matrix for a nested orthogonal basis for Kk(A, v) contain recurrence coefficients for a
sequence of orthogonal polynomials {pi}k−1

i=0 ?
Lemma 6.3 relates vectors in Krylov subspaces with polynomials and states how the
inner products correspond.

Lemma 6.3 (Krylov induced inner product). Consider a normal matrix A ∈ Cm×m
and v ∈ Cm of grade g. Let {bi}k−1

i=0 form a nested basis for Kk(A, v), and let the
polynomials pi ∈ Pi be such that bi = pi(A)v. Then the Euclidean inner product 〈., .〉E
on Kk(A, v) induces an inner product of the form

〈pi, pj〉g =
g∑
k=1

αkpi(zk)pj(zk), αk > 0,

on the space of polynomials Pg.

Proof. A diagonalizable A has an eigenvalue decomposition A = XΛX−1, with
Λ = diag({λi}) and for a normal matrix X−1 = XH . Substitute the eigenvalue
decomposition of A and use XHX = I to obtain

〈bi, bj〉E = 〈pi(A)v, pj(A)v〉E

= vH p̄j(AH)pi(A)v

= vHX−H p̄j(ΛH)XHXpi(Λ)X−1v

= vHX−H p̄j(ΛH)pi(Λ)X−1v︸ ︷︷ ︸
=:c

= cH

p̄j(λ̄1)
. . .

p̄j(λ̄m)


pi(λ1)

. . .
pi(λm)

 c

=
m∑
k=1
|e>k c|pj(λk)pi(λk).

Denote by {z̃i}di=1 the set of d ≤ m distinct eigenvalues of A. The weight α̃i =∑m
i=l,λl=z̃i |e

>
i c|2 ≥ 0 corresponds to z̃i. Let {αi}gi=1 be the weights in {α̃i}di=1 which
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are nonzero and let zi be the node corresponding to αi. Then

〈pi, pj〉g :=
g∑
k=1

αkg(zk)f(zk)

is a discrete inner product on Pg × Pg.

In case the matrix A is diagonalizable, but nonnormal, the term XHX will not cancel.
It might be possible to interpret this term as a (nondiagonal) weight matrix, but this
is not explored further.
Theorem 6.1 reveals the connection between orthonormal vectors for Krylov subspaces
and OPs.

Theorem 6.1 (Krylov induced orthogonal polynomials). Consider a normal matrix
A ∈ C and v ∈ Cm with grade g. Let

[
q0 q1 . . . qk−1

]
= Qk ∈ Cm×k form a nested

orthonormal basis for Kk(A, v),k < g. Let polynomials pi ∈ Pi satisfy qi = pi(A)v.
Then the sequence of polynomials {pi}k−1

i=0 consists of orthonormal polynomials with
respect to an inner product of the form

〈pi, pj〉g =
g∑
k=1

αkpi(zk)pj(zk).

Proof. The basis vectors satisfy qi = pi(A)v, with pi ∈ Pi of exact degree i. By
Lemma 6.3, the sequence of polynomials {pi}gi=1 is orthonormal with respect to the
inner product 〈pi, pj〉g, since

δij = 〈qi, qj〉E = 〈pi(A)v, pj(A)v〉E =
g∑
k=1

αkpi(zk)pj(zk) = 〈pi, pj〉g = δij .

Theorem 6.1 allows a functional problem to be translated into a linear algebra problem,
shown in Figure 6.2. The linear algebra problem is in fact an inverse eigenvalue
problem. Choose a diagonal matrix with (distinct) nodes Z = diag({zi}gi=1) and
starting vector with weights v =

[√
α1 . . .

√
αg
]
. Then an orthonormal basis for

K(Z, v) corresponds to OPs with respect to 〈pi, pj〉g =
∑g
k=1 αkpi(zk)pj(zk).

6.2.4 Gram matrix

The Gram matrix of a Krylov basis for a normal matrix and the Gram matrix for
monomials with respect to a discrete inner product correspond. Corollary 6.1 follows
immediately from Lemma 6.3, since mi,j := 〈Ajv,Aiv〉E = 〈zj , zi〉g.
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Generate recurrence
coefficients for OPs {pi}k−1

i=0

Compute orthonormal
nested basis for Kk(A, v)

〈., .〉E ↔ 〈., .〉g
Kk ↔ Pk−1

Linear algebraic
solution

Functional
solution

Arnoldi
iteration

AHA = AAH

(6.1)

Stieltjes
procedure

Figure 6.2: Scheme for generating recurrence coefficients for OPs.

Corollary 6.1. Let Bk =
[
v Av . . . Ak−1v

]
form a nested basis for Kk(A, v), with

AHA = AAH and k < g, with g the grade of v with respect to A. The corresponding
Gram matrix

Mk = BHk Bk =


〈v, v〉E 〈Av, v〉E . . . 〈Ak−1v, v〉E
〈v,Av〉E 〈Av,Av〉E . . . 〈Ak−1v,Av〉E

...
...

...
〈v,Ak−1v〉E 〈Av,Ak−1v〉E . . . 〈Ak−1v,Ak−1v〉E


equals the Gram matrix for monomials generated by 〈., .〉g, as defined in Lemma 6.3,

〈1, 1〉g 〈z, 1〉g . . . 〈zk−1, 1〉g
〈1, z〉g 〈z, z〉g . . . 〈zk−1, z〉g

...
...

...
〈1, zk−1〉g 〈z, zk−1〉g . . . 〈zk−1, zk−1〉g

 = Mk.

This corollary implies that theoretical results and numerical procedures for Gram
matrices of Krylov subspaces are also valid or applicable to the Gram matrices of
polynomials and vice versa. Results for Gram matrices can be found in Chapter 5.
A common representation for orthogonal polynomials is the determinantal formula in
Property 6.2.
Property 6.2 (Determinantal formula). The determinant, with moments mi,j =
〈zj , zi〉g,

pk(z) = det




m0,0 m0,1 . . . m0,k
m1,0 m1,1 . . . m1,k
...

...
...

mk−1,0 mk−1,1 . . . mk−1,k
1 z . . . zk




is an orthogonal polynomial with respect to 〈., .〉g, i.e., 〈zj , pk(z)〉g = 0 for j < k.
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6.3 Biorthogonal polynomials

Polynomials orthogonal with respect to a linear functional are called formal orthogonal
polynomials [32,56]. We will use the term biorthogonal polynomials, which stresses
that there are in fact two sequences of polynomials. This term is better suited for the
discussion on biorthogonal rational functions in Chapter 7 .
The dual of the vector space of polynomials P is the space of linear functionals, with
a linear functional L : P → C. For the vector space of column vectors Cm, the dual
space is formed by row vectors C1×m.
The linear functional L on P is defined, here, by fixing its value for the monomials

L{zi} := mi, i = 0, 1, . . . ,

where mi are given and will be called the moments (associated with L). A biorthogonal
polynomial pk−1 is a polynomial of exact degree k − 1 such that

L{zipk−1} = 0, i = 0, 1, . . . , k − 2.

The Gram matrix induced by {mi} is of Hankel form and leads to a three term
recurrence relation for biorthogonal polynomials, called Lanczos polynomials, which
are the subject of Section 6.3.1. Section 6.3.2 discusses the recurrence matrix and
Section 6.3.3 the relation to the Lanczos iteration. A justification for the generalization
from inner product to linear functionals is given in Section 6.3.4.

6.3.1 Lanczos polynomials

Lanczos polynomials are the polynomials representing the biorthonormal basis vectors
generated by the Lanczos iteration. The Lanczos iteration generates a pair of
biorthonormal sequences {vi}k−1

i=0 , {wi}k−1
i=0 which satisfy, for l = 0, 1, . . . , k − 1,

span{v0, v1, . . . , vl} = Kl(A, v) := span{v,Av, . . . , Al−1v},

span{w0, w1, . . . , wl} = Kl(AH , w) := span{w,AHw, . . . , (AH)l−1w},

and the biorthonormality condition

〈vi, wj〉E = δij .

The basisvector vl, 0 ≤ l < k, is an element of Kl(A, v), i.e., vl = pl−1(A)v for
α0 +α1z+ · · ·+αl−1z

l−1 =: pl−1 ∈ Pl−1 of exact degree. The orthogonality conditions
vl ⊥ Kl−1(AH , w) require the first 2l − 2 moments mi, i = 0, 1, . . . , 2l − 3. The
orthogonality conditions 〈vl, (AH)iw〉E = 0 for i = 0, 1, . . . , l − 2, can be written as a
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system of l − 1 equations with l unknowns
wHA0pl−1(A)v = 0
wHA1pl−1(A)v = 0

...
wHA2l−3pl−1(A)v = 0

⇔


wHv . . . wHAl−1v
wHAv . . . wHAlv

...
...

wHAl−2v . . . wHA2l−3v



α0
α1
...

αl−1

 =


0
0
...
0

 .
A normalization condition provides an additional equation. Here we choose
wHAl−1pl−1(A)v = η to get the square system

Mla :=


wHv wHAv . . . wHAl−1v
wHAv wHA2v . . . wHAlv

...
...

...
wHAl−2v wHAl−1v . . . wHA2l−3v
wHAl−1v wHAlv . . . wHA2l−2v



α0
α1
...

αl−1

 =


0
0
...
0
η


and Ml is a Gram matrix with moments µi,j = L{zi+j} = ci+j = wHAi+jv and thus,
a Hankel matrix.
From L{zipl−1} = 0, for 0 ≤ i < l−1, it follows that pl−1(z) is orthogonal to Pl−2 with
respect to the linear functional L defined by the 2l−1 moments L{zi} := mi = wHAiv,
for i = 0, 1, . . . , 2l − 2.
The other sequence {wi} in the pair is characterized by the polynomial sequence {qi},
qi ∈ Pi satisfying wl = ql−1(AH)w and 〈wl, Aiv〉E = 0, i = 0, 1, . . . , l−2. The induced
system of equations for ql−1(z) = β0 + β1z + · · ·+ βl−1z is

MH
k b :=


vHw vHAHw . . . vH(AH)l−1w

vHAHw vH(AH)2w . . . vH(AH)lw
...

...
...

vH(AH)l−2w vH(AH)l−1w . . . vH(AH)2l−3w
vH(AH)l−1w vH(AH)lw . . . vH(AH)2l−2w



β0
β1
...

βl−1

 =


0
0
...
0
ν

 .

To reveal the relationship between pl−1(z) and ql−1(z), take a look at the Gram
matrix formulation. Orthonormality, with normalization 〈pl−1(A)v, ql−1(AH)w〉E = 1,
requires

Mka =


0
...
0
η

 , MH
k b =


0
...
0
ν

 and bHMka = ν̄η = 1.

Group all coefficients of the pair of sequences of Lanczos polynomials {pi}k−1
i=0 and

{qi}k−1
i=0 into the columns of RVk and RWk , respectively. These are upper triangular

matrices by construction and represent the LR factorization of the Gram matrix Mk,
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i.e., Mk = (RWk )−H(RVk )−1. From the symmetry of Mk, i.e., M>k = Mk, we have
that Mk = (RWk )−H(RVk )−1 = (RVk )−>(RWk )−1 and by the uniqueness of the LR
factorization, and for appropriate normalization, RWk = RVk . Hence, qi(z) = p̄i(z) for
all i, they only differ from each other by complex conjugation of their coefficients.
This explains the commonly used name formal orthogonal polynomial instead of
biorthogonal polynomials.
The Lanczos polynomials exist up to degree k if and only if Mk is quasi-definite. If
they exist, then they are unique up to scaling [10]. If Mk becomes singular, a notion
of block orthogonality can be introduced to attempt to skip over the singular principal
submatrix [10, 72]. A quasi-definite Hankel matrix implies a three term recurrence
relation and the relation between the coefficients implies that the recurrence matrix is
tridiagonal and symmetric.

6.3.2 Recurrence matrix

The Gram matrices for the Lanczos polynomials are Hankel matrices, therefore the
same three term recurrence relation underlies these polynomials and the polynomial
Lanczos iteration. The recurrence relation also can be obtained by starting from
the two-sided Gram-Schmidt procedure, using orthogonality of the polynomials and
L{(zp(z)) q(z)} = L{p(z) (zq(z))}.

Lemma 6.4 (Recurrence matrix for Lanczos polynomials). A biorthonormal pair
of sequences of polynomials {pi}k−1

i=0 , {qi}k−1
i=0 with respect to a quasi-definite linear

functional L : P2k−1 → C satisfies the pair of recurrence relations

zpi(z) = pi(z)Ti + ti+1,ipi+1(z)

zqi(z) = qi(z)T i + t̄i+1,iqi+1(z)

for a tridiagonal matrix Ti ∈ Ck×k.

The recurrence matrix Tk ∈ Ck×k

Tk :=


α1 β2

β2 α2
. . .

. . . . . . βk
βk αk


is called complex symmetric because Tk = T>k . This is to stress that it is in general not
Hermitian, which requires Tk = T>k and Tk ∈ Rk×k. The determinant of the recurrence
matrix satisfies the three term recurrence relation represented by this matrix.
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Property 6.3 (Recurrence relation for recurrence matrix). The determinant of the
recurrence matrix Tk ∈ Ck×k from Lemma 6.4 satisfies a three term recurrence relation

det(T1) = α1, det(T2) = α1α2 − β2
2

det(Tk) = αk det(Tk−1)− β2
2 det(Tk−2).

Proof. Expand the determinant along last column and last row.

The correspondence of the roots of pl(z) to the eigenvalues of Tl is proved by Draux [57].

6.3.3 Relation to Lanczos iteration

To obtain a relation to the Lanczos iteration, a linear functional L can be defined
using moments wHAiv arising from Krylov subspaces. Lemma 6.5 provides an explicit
form for the linear functional related to polynomial Krylov subspaces.

Lemma 6.5 (Krylov induced linear functional). Consider Krylov subspaces Kk(A, v),
Kk(AH , w) for a diagonalizable matrix A ∈ Cm×m and v, w ∈ Cm. Then 〈., .〉E on
Kk(A, v)×Kk(AH , w) induces the linear functional L : P2k−1 → C with moments

mi = wHAiv.

More precisely the linear functional is of the form L{zi} =
∑g
k=1 αkz

i
k, with g the

amount of distinct eigenvalues {zk}mk=0 and corresponding nonzero weights αk ∈ C.

Proof. A diagonalizable A has an eigenvalue decomposition A = XΛX−1, with Λ =
diag({λi}). The linear functional can be defined by assigning values to its moments

〈Aiv, (AH)jw〉E = wHAi+jv = wHX−1︸ ︷︷ ︸
=:cw

Λi+j Xv︸︷︷︸
cv

=
m∑
k=1

(e>k cw)H(e>k cv)λ
i+j
k .

Denote by {z̃i}di=1 the set of d ≤ m distinct eigenvalues of A. The weight α̃i =∑m
i=l,λl=zi (e>i cw)(e>i cv) corresponds to z̃i and can vanish. Let {αi}gi=1 be the weights

in {α̃i}di=1 which are nonzero and let zi be the node corresponding to αi. Then

mi :=
g∑
k=1

αkz
i
k, i = 0, 1, . . . , 2k − 2

are the moments which define the linear functional L. Note that g is not necessarily
equal the grade of v or w, since weights of multiple eigenvalues may cancel each
other.
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The connection between the Lanczos iteration and the construction of biorthogonal
polynomials suggests that a normalization of the biorthonormal bases Vk,Wk exists
such that the tridiagonal matrix from Lemma 3.8 is complex symmetric.

Corollary 6.2 (Biorthogonal Krylov bases recurrence relations-complex symmetric).
Let A ∈ Cm×m, v, w ∈ Cm. Consider the Krylov subspaces Kk(A, v),Kk(AH , w), with
k < min{gv, gw}. Then there exist, under the assumption that no breakdown occurs,
biorthonormal nested bases Vk,Wk ∈ Cm×k for these subspaces such that

AVk = VkTk + tk+1,kvke
>
k

AHWk = WkT k + t̄k+1,kwke
>
k ,

where Tk ∈ Ck×k is a complex symmetric tridiagonal matrix.

For more properties of the complex symmetric tridiagonal recurrence matrix and
connections to biorthogonal polynomials we refer to the paper by Beckermann [12].
Throughout this manuscript the linear functional will be assumed to be quasi-definite,
which corresponds to the no-breakdown assumption for the Lanczos iteration. A recent
paper [136] discusses indefinite linear functionals and a look-ahead strategy to deal
with breakdowns.

6.3.4 Applications

Computing the recurrence matrix Tk corresponds to computing the recurrence
coefficients of sequences of biorthogonal polynomials. Figure 6.3 shows a scheme
for computing recurrence coefficients for biorthogonal polynomials via reformulation
as a linear algebraic problem.

Generate recurrence
coefficients for FOPs {pi}k−1

i=0

Compute biorthonormal nested
bases for Kk(A, v),Kk(AH , w)

〈., .〉E ↔ L{.}
Kk ↔ Pk−1

Linear algebraic
solution: Tk

Functional
solution: {pi}k−1

i=0

Lanczos
iteration

Stieltjes
procedure

(6.1)

Figure 6.3: Scheme for generating recurrence coefficients for biorthogonal polynomials.
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Applications of polynomials orthogonal with respect to an inner product and
connections to problems in physics are well known. When the inner product is
replaced by a (indefinite) linear functional, the applications are much less known. So
a short justification of the study of biorthogonal polynomials is in order. An overview
of applications for biorthogonal polynomials is provided:

• In model order reduction, see Chapter 5, moments of the form wHA−j−1v occur
naturally in the power series expansion of the transfer function [74,136,156].

• Sequence transformation methods, to accelerate the convergence of sequences
[29,57].

• Gaussian quadrature in the complex plane [137,150] and quadrature of highly
oscillatory integrals [42] make use of biorthogonal polynomials.

6.4 Conclusion

The connection between polynomials and structured matrices is identified. Triangle
families of polynomials have a proper Hessenberg matrix as a recurrence matrix. The
roots of the polynomials correspond to the eigenvalues of this matrix. Sequences
of orthogonal and biorthogonal polynomials are triangle families and the recurrence
matrices are shown to have Hessenberg and tridiagonal structure. For specific discrete
inner products, the recurrence matrix for (bi)orthogonal polynomials corresponds
to the recurrence matrix for (bi)orthogonal basis vectors for Krylov subspaces. The
recurrence matrix allows us to represent a sequence of polynomials in the language of
linear algebra.



Chapter 7

Orthogonal rational functions

Rational functions with prescribed poles are especially interesting for the approximation
of certain functions in regions of the complex plane, see [138] and references therein.
In numerical quadrature, if the function of interest is not well approximated by a
polynomial, e.g, the function has singularities close to the region of interest, then
rational Gauss quadrature rules [54, 81] can be used. These are Gauss quadrature
rules which are exact for certain rational functions with prescribed poles.
The literature on orthogonal and biorthogonal rational functions is quite extensive:
the monograph by Bultheel et al. [34] is a nice introduction into the field of orthogonal
rational functions. The focus is often on inner products or linear functionals on the
real line or the unit circle. There are some notable results for more general inner
products and linear functionals. These are our primary interest, since the results in
Chapter 4 are also of a general nature. The real line and unit circle are considered to
be special cases of this more general theory. The study of these special cases in their
own right is however still very important.
Numerical procedures to efficiently and stably solve problems involving (bi)orthogonal
rational functions can be developed with a structured matrix approach. The goal
of this chapter is to uncover the relation between (bi)orthogonal vectors in rational
Krylov subspaces and (bi)orthogonal rational functions. This enables us to reformulate
problems defined for rational functions as problems in linear algebra and solve them
using linear algebraic techniques. For example, nodes for rational Gauss quadrature
rules correspond to the roots of orthogonal rational functions and these correspond to
eigenvalues of the associated recurrence pencil. Thus, Golub-Welsch type algorithms
can be developed [54,114,139], which rely on solving a generalized eigenvalue problem
for this recurrence pencil.
First a vector space of rational functions with prescribed poles is introduced in Section
7.1. Orthogonal rational functions which are related to rational Krylov subspaces

123
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are introduced by deriving a suitable discrete inner product for rational functions in
Section 7.2. Section 7.3 discusses orthogonality with respect to a linear functional,
leading to biorthogonal rational functions. These can be represented by a tridiagonal
pencil and are therefore related to biorthogonal rational Krylov subspaces. Section 7.4
summarizes notable results from the literature on ORF which are directly related to
the topics in this manuscript. This summary is purposely kept short to show only the
essence, references are provided which contain the details.

7.1 Rational functions and structured matrices

A rational function r(z) ∈ R is the ratio of two polynomials,

r(z) = p(z)
q(z) , p(z), q(z) ∈ P.

Our interest is in rational functions with prescribed poles. Given a set of poles
Ξ = {ξ1, ξ2, . . . , ξk}, with ξi ∈ C,

r(z) = p(z)
π(z) , p(z) ∈ P and π(z) =

k∏
i=1
ξi 6=∞

(z − ξi). (7.1)

The space formed by these rational functions with prescribed poles will be denoted by
RΞ, which is a short notation for P/π(z). The finite dimensional space RΞ

k is defined
as span{1, r1(z), . . . , rk(z)}, with,

rl(z) = pl(z)
πl(z; Ξ) , πl(z; Ξ) :=

l∏
i=1
ξi 6=∞

(z − ξi), pl ∈ Pl, deg(pl) = l. (7.2)

The set of poles Ξ for RΞ
k must contain (at least) k poles ξi ∈ C. If Ξ contains more

than k poles, the first k are used for the space RΞ
k , conform with the definition in

(7.2).
If Ξ contains exactly k poles and the considered space is of dimension k + 1, then the
order of the poles does not matter, as stated by Property 7.1. This property is useful
below to discuss moments arising from rational function spaces.

Property 7.1 (Equivalence of rational functions spaces [170]). Consider a set of k
poles Ξ = {ξ1, . . . , ξk} and the rational function space RΞ

k . For a fixed value of k and
Ξ̃ any permutation of the poles in Ξ, the space RΞ̃

k = RΞ
k .
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Of course, RΞ
i and RΞ̃

i , for i < k and Ξ containing k poles, are not necessarily the
same. Since nestedness, stated in Property 7.2, is paramount to obtain a connection
to rational Krylov subspaces, the order of the poles cannot be arbitrarily changed.

Property 7.2 (Nestedness of rational function spaces). For a fixed set Ξ of m poles,
the spaces RΞ

k , k = 0, 1, . . . ,m are strictly nested, i.e.,

RΞ
k ⊂ RΞ

k+1, k = 0, 1, . . . ,m− 1.

A nested basis {r0, r1, . . . , rl−1} for the spaceRΞ
l−1 generates a rational Krylov subspace

as follows

span{r0(A)v, r1(A)v, . . . , rl−1(A)v} = Kl(A, v; Ξ), l = 1, 2, . . . , g, (7.3)

with A ∈ Cm×m, v ∈ Cm and g the grade of v with respect to A.
Such a nested basis satisfies a recurrence relation with a proper Hessenberg recurrence
pencil (Hl,Kl), let rl :=

[
r0 r1 . . . rl−1

]
and rl ∈ RΞ

l \RΞ
l−1, then

zrlKl + kl+1,lzrl(z) = rlHl + hl+1,lrl(z). (7.4)

Hence, the pencil (Hl,Kl) represents the sequence of rational functions {ri}l−1
i=0.

Note that this is not the only possible representation, Chapter 4.1 discusses other
representations for rational Krylov subspaces.
Only the Hessenberg recurrence pencil will be considered in the sequel. Section 7.1.1
describes how the Hessenberg recurrence pencil can be used to evaluate the sequence
of rational functions.

7.1.1 Rational function evaluation

A sequence of rational functions {ri(z)}li=0 forming a nested basis for RΞ
l−1 can be

evaluated at z = z? /∈ Ξ using its recurrence pencil (Hl,Kl) appearing in (7.4). Two
possible procedures are discussed, one based on the solution of a linear system of
equations and one based on solving a generalized eigenvalue problem. The interest
in such procedures for rational function evaluation originates from the availability of
efficient and stable numerical methods to solve these problems.

Solve linear system

The linear system to be solved is in fact a matrix notation of the recurrence relation
(7.4) and can be solved by forward substitution. Proposition 7.1 provides the system
to be solved.



126 ORTHOGONAL RATIONAL FUNCTIONS

Proposition 7.1 (Rational function evaluation - system solve). Consider a sequence of
rational functions {ri}l−1

i=0 with poles Ξ = {ξ}l−1
i=1 with recurrence pencil (Hl,Kl) ∈ Cl×l

(7.4). Then evaluating ri(z), i = 0, 1, . . . , l − 1, at z = z? ∈ C\Ξ is equivalent to
solving the system of equations

x>


1
0
... (Hn − z?Kn)In×(n−1)

0
0

 =
[
r0 0 . . . 0

]

for x ∈ Cl and where I l×(l−1) is the l × (l − 1) leading principal submatrix of the
identity matrix. Equivalent in the sense that xl := xel = rl−1(z?), 1 < i < l.

Proof. Analogous to the proof of Proposition 6.1.

The condition is given by κ(G), where G :=
[
e1 (Hl − z?Kl)I l×(l−1)]. This depends

on both (Hl,Kl) and z?. Note that the polynomial form, given in Proposition 6.1 is a
special case, i.e., Kl = Il.

Eigenvalue decomposition

The roots of rl(z), appearing in recurrence relation (7.4), correspond to the generalized
eigenvalues of (Hl,Kl) if there are no multiple eigenvalues. In other words, if (Hl,Kl)
has l distinct eigenvalues, then these eigenvalues are the l roots of the rational function
rl(z). Then the factored form of rl(z) can be obtained, i.e., rl(z) = ηl

∏l

i=1
(z−zi)∏l

j=1
ξj 6=∞

(z−ξj)
, with

{zi}li=1 the roots and Ξ = {ξj}lj=1 the poles of rl(z). This is stated in Proposition 7.2.

Proposition 7.2 (Rational function evaluation - eigenvalue decomposition). Consider
a sequence of rational functions {ri}l−1

i=0 with poles Ξ = {ξ}l−1
i=1 and recurrence pencil

(Hl,Kl) ∈ Cl×l satisfying (7.4). If, for all j, the j × j principal leading subpencil
(H(j)

l ,K
(j)
l ) has simple generalized eigenvalues {z(j)

i }, with z
(j)
i 6= ξk i = 1, . . . , j and

k = 1, 2, . . . , l − 1, then

rj(z) = ηj

∏j
i=1(z − z(j)

i )∏l
k=1

ξk 6=∞
(z − ξk)

, where ηj is determined by normalization.

Proof. Analogous to the proof of Proposition 6.2.
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Proposition 7.2 requires that none of the roots overlap with any of the poles in
Ξ. In some cases this can be guaranteed. For orthogonal rational functions for an
inner product, all roots are located in the convex hull of the support of the measure
associated with this inner product [154]. In the sequel the support of the measure is
some arc γ in the complex plane. Hence, choosing poles outside this region guarantees
that the requirement is satisfied.

The condition number for generalized eigenvalues (α, β) such that βHnx = αKnx can
be defined using the (scale-dependent) chordal metric [90, p.396] or for λ such that
Hnx = λKnx, following Higham and Higham [103].

7.2 Orthogonal rational functions

Orthogonal rational functions are the obvious generalization of orthogonal polynomials.
The vector space in which the functions of interest live is now RΞ instead of P. A
sequence of rational functions {ri}i, ri ∈ RΞ

i , is said to be orthogonal with respect to
an inner product 〈., .〉 : RΞ ×RΞ → C if ri ∈ RΞ

i , ri /∈ RΞ
i−1 and

〈rk, rj〉

{
= 0, if k 6= j

> 0, if k = j
.

A suitable inner product defined for complex valued functions f , g is very similar to
the inner product used for OPs in Section 6.2. However, an additional restriction must
be imposed, namely that the poles Ξ cannot lie on support of the measure γ

〈f, g〉 :=
∫
γ

f(z)g(z)α(z)|dz|,

where α(z) is a positive weight function, γ an arc in the complex plane and Ξ∩ γ = ∅.
In order to develop linear algebraic procedures for ORFs, in particular a procedure for
the computation of their recurrence coefficients, a connection with rational Krylov
subspaces is identified. Section 7.2.1 introduces the discrete inner product on RΞ

l ,
whose relation to the Euclidean inner product on Kl(A, v; Ξ) is stated in Section 7.2.2.
A procedure to generate ORFs starting from OPs is shortly described in Section 7.2.3.
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7.2.1 Discrete inner product

A discrete inner product suitable for RΞ
l is

〈f, g〉m :=
m∑
i=1

f(zi)g(zi)α(zi), zi ∈ C (7.5)

with m ≥ l distinct nodes {zi}mi=1, a positive weight function α(z) and poles that do
not coincide with any of the nodes, i.e., Ξ∩{zi}mi=1 = ∅. Discretization of a continuous
inner product can be performed by using the moments gi,j associated with the poles
Ξ = {ξ1, . . . , ξl−1}, if these moments are available.
These moments are defined to correspond to those appearing in Chapter 5 in the context
of multi-point Padé approximation and in the literature on rational functions [170].
Let Ξ̂ = {ξ̂1, . . . , ξ̂l̂} denote the set of distinct elements in Ξ = {ξ1, . . . , ξl−1}, that is,
the set of distinct poles. And let li, for i = 1, . . . , l̂, denote the number of occurrences
li of ξ̂i in Ξ. Then the classical moments associated with Ξ are the zeroth moment
g0,0 :=

∫
γ
α(z)|dz| and

gi,j =
{∫

γ
(z − ξ̂i)−jα(z)|dz|, if ξ̂i 6=∞∫
γ
zjα(z)|dz|, if ξ̂i =∞

, j = 1, . . . , 2li, i = 1, . . . , l̂,

for a total of 2l − 1 moments. An illustrative example is provided in Example 7.1.

Example 7.1 (Example of moments for rational functions). Consider the set of
poles Ξ = {ξ1,∞, ξ2, ξ1,∞}. Then Ξ̂ = {ξ1,∞, ξ2} and {n1, n2, n3} = {2, 2, 1}. The
moments are

g1,j =
∫
γ

(z − ξ1)−jα(z)|dz|, j = 1, 2, 3, 4,

g2,j =
∫
γ

zjα(z)|dz|, j = 1, 2, 3, 4,

g3,j =
∫
γ

(z − ξ2)−jα(z)|dz|, j = 1, 2.

Together with the zeroth moment, these are 2l − 1 = 11 moments.

Modified moments also can be used and are preferred over the classical moments,
since the map from the classical moments to recurrence coefficients is ill-conditioned.
The map from modified moments to recurrence coefficients is better conditioned.
The difficulty now is to obtain the modified moments accurately. For details about
the conditioning of these maps and for a procedure to obtain modified moments via
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interpolatory quadrature we refer to the paper by Van Deun and Bultheel [170].
Once a discrete inner product (7.5) is obtained, there is a connection to the Euclidean
inner product for Krylov subspaces. The next section clarifies this connection.

7.2.2 Krylov induced inner product

The relation between the Euclidean inner product on rational Krylov subspaces
Kl(A, v; Ξ), for A ∈ Cm×m and of an inner product on the space RΞ

l−1 is derived.
Lemma 7.1 states that for a normal matrix A the induced inner product is the weighted
sum of function evaluations at the eigenvalues of A. A similar result is derived by
Güttel [98, p.43].

Lemma 7.1 (Krylov induced inner product). Consider a normal matrix A ∈ Cm×m
and v ∈ Cm of grade g. Let {bi}l−1

i=0 form a nested basis for Kl(A, v; Ξ), and let rational
functions ri ∈ RΞ

i be such that bi = ri(A)v and Ξ ∩ σ(A) = ∅. Then the Euclidean
inner product 〈., .〉E on Kl(A, v; Ξ) induces an inner product of the form

〈ri, rj〉g =
g∑
k=1

αkrj(zk)ri(zk), αk > 0,

on the space of rational functions Pl−1/π with π(z) :=
∏l−1
i=1

ξi 6=∞
(z − ξi). If g ≥ l, then

Pl−1/π = RΞ
l−1.

Proof. Similar to the proof of Lemma 6.3.

Theorem 7.1 states that orthogonal vectors in rational Krylov subspaces correspond
to ORFs, which provides the means to generate recurrence coefficients for a sequence
of orthogonal rational functions via (rational) Krylov subspace methods.

Theorem 7.1 (Krylov induced orthogonal rational functions). Consider a normal
matrix A ∈ Cm×m and v ∈ Cm with grade g. Let

[
q0 q1 . . . ql−1

]
= Ql ∈ Cm×l

form a nested orthonormal basis for Kl(A, v; Ξ), l < g. Let rational functions ri ∈ RΞ
i

satisfy qi = ri(A)v. Then the sequence of rational functions {ri}l−1
i=0 consists of

orthonormal rational functions with respect to an inner product of the form

〈ri, rj〉g =
g∑
k=1

αkrj(rk)ri(zk).

Proof. Follows from Lemma 7.1, δi,j = 〈qi, qj〉E = 〈ri(A)v, rj(A)v〉E = 〈ri, rj〉g.
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A numerical procedure applying the result in this theorem to compute the recurrence
coefficients for ORFs is proposed in Chapter 9. The following section discusses an
alternative procedure.

7.2.3 Rational modification of a measure

A high level description of a procedure for the generation of recurrence coefficients of
ORFs is provided. Details can be found in the literature. The procedure is proposed
by Gautschi [76, 80, 81] and see also López Lagomasino et al. [127]. Consider the
rational function r(z) = p(z)

π(z) ∈ P/π, with a prescribed polynomial π(z) satisfying
π(z) > 0 on the support of some given measure µ. Then a sequence of ORFs {ri}i,
ri ∈ Pi/π, for the inner product 〈r, s〉µ =

∫
γ
r(z)s(z)dµ(z) can be generated by

1. computing the recurrence coefficients of a sequence of OPs {pi} with respect to
〈., .〉µ;

2. applying a procedure that implements the generalized Christoffel transformation
[76,190], which modifies the recurrence coefficients of {pi} to be orthogonal with
respect to the measure µ̃ := µ

|π(z)|2 ;

3. the resulting recurrence coefficients generate the requested ORFs {ri}i.

We will not pursue this idea further, the procedure based on an inverse eigenvalue
problem (IEP) for structured matrices provides a simpler relation between weights
in the inner product and the measure required for the problem formulation. Such
procedures, based on IEPs, are among the most effective and stable methods for
the generation of recurrence coefficients of orthogonal functions [80, 141]. Chapter
9 proposes an IEP for ORFs with respect to discrete inner products (7.5) and
corresponding procedures to solve them.

7.2.4 Gram matrix

The Gram matrix for rational functions for a discrete inner product (7.5) corresponds,
by Lemma 7.1, to the Gram matrix for rational Krylov subspaces generated by
appropriate A and v. If the functions in rl :=

[
r0 r1 . . . rl−1

]
form a nested basis

for RΞ
l−1 and BΞ

l a nested basis for Kl(A, v; Ξ), and 〈., .〉g is the inner product on RΞ
l−1

induced by the Euclidean inner product on Kl(A, v; Ξ), then the Gram matrices are
the same

(BΞ
l )HBΞ

l =
[
〈ri, rj〉g

]l−1
j,i=1 .
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A detailed description of the structure of Gram matrices for a rational Krylov subspace
can be found in Section 5.2.3.
Orthogonal rational functions also allow a determinantal expression [34, Theorem
2.2.4].

7.3 Biorthogonal rational functions

Biorthogonality for rational functions is characterized by a linear functional L.
Biorthogonal rational functions are two sequences of rational functions {rl}l and
{sk}k that satisfy, for some given sets of poles Ξ and Θ,

rl ∈ RΞ
l and sk ∈ RΘ

k

and

L{ri(z)sj(z)}
{

= 0, if i 6= j

6= 0, if i = j
.

We will define a linear functional acting on the finite space RΞ
l−1 · RΘ

l−1, which is short
for R{Ξ∪Θ}

2l−1 . In the remainder of this chapter we assume that there are exactly l − 1
poles in Ξ and Θ, then this notation makes sense. A sequence of moments can be used
to define a linear functional, Section 7.3.1 provides the details. Once it is clear how a
linear functional can be defined, Section 7.3.2 shows that a linear functional can be
constructed which relates biorthogonal rational functions to biorthogonal vectors in
rational Krylov subspaces.

7.3.1 Linear functional

A linear functional L : RΞ · RΘ → C will be defined by fixing its values at certain
elementary rational functions. These elementary rational functions are positive powers
of z or (z− ξ)−1, for any ξ ∈ C. Exactly which elementary basic functions are relevant
depends on the choice of poles Ξ and Θ. Two cases are distinguished: the case Ξ = Θ,
where the two spaces have the same poles of the same multiplicity, and the case where
none of the poles in Ξ appear in Θ. When only a subset of the poles in Ξ corresponds
to those in Θ, these two cases can be combined.
A sequence of 2l − 1 moments {gi,j} must be available to be able to define a linear
functional on RΞ

l−1 · RΘ
l−1.



132 ORTHOGONAL RATIONAL FUNCTIONS

Case: Ξ = Θ

The poles Ξ are reordered to obtain Ξ̃ such that all equal poles are grouped together

{ξ1, ξ2, . . . , ξl−1} → {ξ̃1, . . . , ξ̃1︸ ︷︷ ︸
l1

, ξ̃2, . . . , ξ̃2︸ ︷︷ ︸
l2

, . . . , ξ̃l̂, . . . , ξ̃l̂︸ ︷︷ ︸
ll̂

},

with
∑l̂
i=1 li = l − 1. The elementary rational functions are

1, 1
z − ξ̃1

,
1

(z − ξ̃1)2
, . . . ,

1
(z − ξ̃1)2l1︸ ︷︷ ︸

l1

, . . . ,
1

z − ξ̃l̂
,

1
(z − ξ̃l̂)2

, . . . ,
1

(z − ξ̃l̂)2ll̂︸ ︷︷ ︸
ll̂

.

The linear functional L is defined by assigning a given value gi,j to L{ 1
(z−ξ̃i)j

}, i.e.,

L{1},
L{ 1

z−ξ̃1
},L{ 1

(z−ξ̃1)2 }, . . . ,L{ 1
(z−ξ̃1)2l1

},
L{ 1

z−ξ̃2
},L{ 1

(z−ξ̃2)2 }, . . . ,L{ 1
(z−ξ̃2)2l2

},
...

L{ 1
z−ξ̃l̂
},L{ 1

(z−ξ̃l̂)2 }, . . . ,L{ 1
(z−ξ̃l̂)

2l
l̂
}

:=



g0,0,

g1,1, g1,2, . . . , g1,2l1 ,

g2,1, g2,2, . . . , g2,2l2 ,
...

gl̂,1, gl̂,2, . . . , gl̂,2ll̂

.

Case: Ξ ∩Θ = ∅

Consider the sets of poles Ξ and Θ satisfying ξi 6= θj for all i, j. That is, the two sets
have no poles in common. Reorder both sets to group equal poles, obtaining Ξ̃ and Θ̃

{ξ1, ξ2, . . . , ξl−1} → {ξ̃1, . . . , ξ̃1︸ ︷︷ ︸
l1

, ξ̃2, . . . , ξ̃2︸ ︷︷ ︸
l2

, . . . , ξ̃l̂, . . . , ξ̃l̂︸ ︷︷ ︸
ll̂

},

{θ1, θ2, . . . , θk−1} → {θ̃1, . . . , θ̃1︸ ︷︷ ︸
k1

, θ̃2, . . . , θ̃2︸ ︷︷ ︸
k2

, . . . , θ̃k̂, . . . , θ̃k̂︸ ︷︷ ︸
kk̂

},

with
∑l̂
i=1 li = l − 1 and

∑k̂
i=1 ki = l − 1. The basis vectors are

1,

1
z − ξ̃1

, . . . ,
1

(z − ξ̃1)l1
,

1
z − ξ̃2

, . . . ,
1

(z − ξ̃2)l2
, . . . ,

1
z − ξ̃l̂

, . . . ,
1

(z − ξ̃l̂)ll̂

1
z − θ̃1

, . . . ,
1

(z − θ̃1)k1
,

1
z − θ̃2

, . . . ,
1

(z − θ̃2)k2
, . . .

1
z − θ̃k̂

, . . . ,
1

(z − θ̃k̂)kk̂
.
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The linear functional L can be defined by assigning values from the sequence {gi,j} to
the evaluation of L in these basisvectors.

7.3.2 Lanczos rational functions

The connection between the Euclidean inner product on rational Krylov subspaces
and certain linear functionals on rational function spaces allows the construction of
biorthogonal rational functions via structured matrix procedures. The biorthogonal
rational functions that can be generated in this manner will be called Lanczos rational
functions, in analogy with Lanczos polynomials. Appropriate linear functionals on
rational function spaces are defined in Lemma 7.2 by using moments arising from
rational Krylov subspaces.

Lemma 7.2 (rational Krylov induced linear functional). Consider rational Krylov
subspaces Kl(A, v; Ξ), Kl(AH , w; Θ) for a diagonalizable matrix A ∈ Cm×m and v, w ∈
Cm. Then 〈., .〉E on Kl(A, v; Ξ) × Kl(AH , w; Θ) induces a linear functional Lg :
RΞ
l−1 · RΘ

l−1 → C of the form Lg{t(z)} =
∑g
k=1 αkt(zk), with g the amount of distinct

eigenvalues of A with nonzero weights αk ∈ C and t(z) ∈ RΞ
l−1 · RΘ

l−1.

Proof. Consider x ∈ Kl(A, v; Ξ) and y ∈ Kl(AH , w; Θ) and rational functions r, s
such that r(A)v = x and s̄(AH)w = y. Clearly r ∈ RΞ

l−1 and s ∈ RΘ
l−1. Then, for

A = XΛX−1 with Λ = diag(λ1, . . . , λm),

〈x, y〉E = wHs(A)r(A)v = wHX︸ ︷︷ ︸
=:cHw

s(Λ)r(Λ)X−1v︸ ︷︷ ︸
=:cv

=
m∑
k=1

(e>k cw)H(e>k cv)r(zk)s(zk).

Denote by {z̃i}di=1 the set of d ≤ m distinct eigenvalues of A. The weight α̃k :=∑m
i=l,λl=zi(e

>
k cw)H(e>k cv) corresponds to z̃i and can vanish. Let {αi}gi=1 be the weights

in {α̃i}di=1 which are nonzero and let zi be the node corresponding to αi. Then the
linear functional for t(z) ∈ RΞ

k−1 · RΘ
k−1 has the form Lg{t(z)} =

∑g
k=1 αkt(zk).

The linear functional from Lemma 7.2 is characterized by its moments g0,0 = wHv and

gi,j = mj−1(ξi), for i, j ≥ 1,

with mj(ξ) as defined in (5.2). Our main interest in this functional, however, is that
we can determine the nodes {zi}i and weights {e>i c̄w, e>i cv}i which are used in the
linear functional. For more details about the moments we remark that the Gram
matrix generated by L for RΞ

l−1 · RΘ
l−1 can be studied by relating it to the Gram

matrix for Kl(A, v; Ξ)×Kl(AH , w; Θ) and this is discussed in Section 5.2.3.
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Recurrence pencil

Lanczos rational functions, which are biorthogonal rational functions, satisfy a
recurrence relation governed by a tridiagonal recurrence pencil. This result follows
from combining Theorem 7.2, relating biorthogonal vectors in RKS to Lanczos rational
functions, with Theorem 4.6, proving that a tridiagonal recurrence pencil underlies
the biorthogonal Krylov vectors.

Theorem 7.2 (Krylov induced biorthogonal rational functions). Consider a
diagonalizable matrix A ∈ Cm×m and v ∈ Cm with grade g. Let

[
v0 v1 . . . vl−1

]
=

Vl ∈ Cm×l and
[
w0 w1 . . . wl−1

]
= Wl ∈ Cm×l form nested biorthonormal bases

for Kl(A, v; Ξ) and Kl(AH , w; Θ). Let rational functions ri ∈ RΞ
i , si ∈ RΘ

i satisfy
vi = ri(A)v, wi = si(AH)w. Then the pair of sequences of rational functions {ri}l−1

i=0
and {si}l−1

i=0 are biorthonormal with respect to the linear functional

Lg{t(z)} =
g∑
k=1

αkt(zk).

Proof. It follows from Lemma 7.2 that

δi,j = 〈vi, wj〉E = 〈ri(A)v, sj(AH)w〉E = Lg{ri(z)sj(z)}.

This connection is exploited in Chapter 9, where linear algebraic techniques for the
generation of recurrence coefficients of Lanczos rational functions are developed.
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7.4 Connections to ORF literature

The literature on orthogonal rational functions is too vast to be summarized in a
single section. Only some notable results which are immediately applicable to the
discussion in this manuscript are summarized. In the ORF literature, often rational
Krylov subspaces are generated with A and A> and the bilinear form 〈x, y〉> = y>x,
x, y ∈ Cm instead of our choice A, AH and 〈x, y〉E = yHx. The results we obtained
above remain, with minor modifications, valid for A, A> and 〈x, y〉>. Appendix A.2
contains modified proofs of the principal theorems of Chapter 3 and Chapter 4 on
matrix structures in Krylov subspaces. Tridiagonal recurrence pencils underlying
(bi)orthogonal rational functions are discussed in Section 7.4.1. Gauss quadrature rules
use the roots of OPs as nodes, and rational Gauss quadrature uses the roots of ORFs.
Section 7.4.2 provides some references to results linking these roots to eigenvalue
problems for structured matrices. There are also some connections to spectral theory,
which are discussed in Section 7.4.3.

7.4.1 Tridiagonal pencil

The connection between a tridiagonal recurrence pencil and biorthogonal rational
functions with finite poles seems to be first explicitly noted by Zhedanov [192].
Zhedanov shows that RII-polynomials arise as the eigenvectors from a generalized
eigenvalue problem for a tridiagonal pencil. These RII-polynomials satisfy the
recurrence relation

Pn+1(z) + ρn(vn − z)Pn(z) + un(z − an)(z − bn)Pn−1(z) = 0, (7.6)

with initial conditions
P−1(z) ≡ 0, P0(z) ≡ 1.

Assume that the following restrictions are satisfied

Pn(ak) 6= 0, Pn(bk) 6= 0 un 6= 0, for all n, k. (7.7)

For brevity we introduce the following notations:

A0 = B0 = 1, An(z) =
n∏
k=1

(z − ak), Bn(z) =
n∏
k=1

(z − bk).

The related generalized eigenvalue problem is Tψ = λSψ, where the components
ψi of ψ are rational functions in λ. The relation between the pencil (T, S) and the
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recurrence relation (7.6) is:

ρn = sn,n, vn = tn,n
sn,n

, n = 1, 2, . . . ,m,

un = sn,n+1sn+1,n, bn = tn,n+1

sn,n+1
, an = tn+1,n

sn+1,n
, n = 1, 2, . . . ,m− 1.

For a specific RII-polynomial sequence Ismail and Sri Ranga [109] showed that the
zeros are simple and lie on the real line, which means that all the roots of these
polynomials can be obtained by solving a related generalized eigenvalue problem.
A connection between some Geronimus transformations of complex Jacobi matrices
for biOPs and tridiagonal pencils for RII-polynomials is discussed in [6].

Note on the history

Ismail and Masson [108] introduced RII-polynomials via related continued fractions.
Earlier Hendriksen and Njåstad [101] introduced them in relation to multi-point
Padé approximation. A more recent paper on tridiagonal pencils, continued fractions
and biorthogonal rational functions [13] includes the connection to multi-point Padé
approximation, a Favard type theorem and an explicit expression for the linear
functional accompanying this Favard theorem.

7.4.2 Rational Gauss quadrature

Gauss quadrature rules that are exact for rational functions with prescribed poles are
called rational Gauss quadrature rules. These are interesting if the function of interest
does not behave like a polynomial, for example it has singularities outside of the region
of interest and close to its boundary. The use of rational Gauss quadrature is illustrated
in [54, 81]. One approach is to start from a sequence of OPs and apply rational
transformations on the associated measure to obtain a sequence of ORFs [76, 160].
Another approach uses the structure of the recurrence matrix or pencil of orthogonal
rational functions to generate a sequence of ORFs directly [54,55,113,127,139]. These
are Golub-Welsch type algorithms [91].
For quadrature it is interesting that the weights are positive and the nodes are inside
the convex hull of the measure. Therefore, mainly orthogonal rational functions (with
respect to an inner product) are considered in literature on rational Gauss quadrature.
For a tridiagonal recurrence pencil representing ORFs it is proved [33, 54, 55] that,
under some mild conditions on the poles, the roots of the ORFs and eigenvalues of a
GEVP for a tridiagonal pencil correspond.



CONCLUSION 137

7.4.3 Spectral theory

In spectral theory, the recurrence matrices and pencils that are discussed in this thesis
appear as well. The CMV decomposition [41] is a well-known example, which is a
pentadiagonal matrix or sparse tridiagonal pencil, the relation to rational Krylov
subspaces can be found in the paper by Watkins [179]. See also the survey paper by
Simon [153].
So-called generalized moment problem matrices (GMP matrices) have been receiving
some attention the past years [59, 187]. These matrices correspond to the matrices in
Theorem 4.5. Eichinger and collaborators [59] use GMP matrices to study asymptotic
behavior of orthogonal rational functions. In order to do so, the GMP matrix must be
a finite band matrix, which restricts the choice of possible poles for the underlying
rational functions. Since the tridiagonal pencil representation always has finite band
structure for any choice of poles, this might be an interesting representation to study
instead of the single matrix representation. This is future research.

7.4.4 Conclusion

Literature on orthogonal rational functions, rational Gauss quadrature and spectral
theory for GMP and CMV matrices contain many theoretical results. Some of these
results are directly applicable to the structured matrices and pencils studied here. For
numerical computation, for example constructing (bi)orthogonal rational functions,
the numerical linear algebraic approach taken in this manuscript can lead to powerful
algorithms. Algorithms are proposed in Chapter 8 and Chapter 9.

7.5 Conclusion

Sequences of orthogonal and biorthogonal rational functions are shown to be related
to Hessenberg and tridiagonal pencils, respectively. For certain discrete inner products
and linear functionals these sequences correspond to orthogonal and biorthogonal bases
for rational Krylov subspaces. The general form of such inner products and linear
functionals is derived, they are weighted sums of function evaluations. These relations
allow us to represent rational functions as matrices. Related results appearing in the
literature on orthogonal rational functions is summarized.





Chapter 8

Biorthogonal Methods

Biorthogonal methods are less popular in numerical linear algebra than their orthogonal
counterparts. Contrary to orthogonal methods, biorthogonal methods often do not
possess the inherent stability that is natural to orthogonal transformations used
in orthogonal methods. Sometimes biorthogonal methods are required because it
is dictated by the problem that is posed, e.g., biorthogonal polynomials appear
in quadrature [32, 42, 136, 137, 150], non-Hermitian operators appear in quantum
mechanics [9,48,185,186] and the approximation of the time-ordered exponential is
attempted by using a variant of the non-Hermitian Lanczos iteration [87].
If we do have a choice to use orthogonal or biorthogonal methods, it can still be worth
considering biorthogonal methods. Biorthogonal methods often lead to more efficient
procedures, which allow to solve larger problems than their orthogonal counterpart.
For example, generating biorthonormal bases for Krylov subspaces uses a three term
recurrence relation, implying that only six basis vectors must be kept in memory
at a time, since orthogonalization must only be done with respect to two previous
basis vectors. For orthonormal bases, in general, all basis vectors must be kept
in memory. The fast deterioration of the biorthonormality and the possibility of
serious breakdowns make a simple method generating biorthonormal bases unsuited
for numerical computation. With the use of reorthogonalization procedures and
look-ahead strategies, some of the efficiency is lost, but the numerical behavior of
biorthogonal Krylov subspaces methods is improved. Thus, biorthonormal methods
are interesting as a basis for numerical algorithms, however a lot of research is often
needed to develop biorthogonal algorithms that are robust and efficient. One example
is BiCGSTAB [168], which solves systems of equations for general matrices using the
non-Hermitian Lanczos iteration.
Biorthogonal methods are also an interesting theoretical tool. By studying a general
biorthogonal framework, it is possible to obtain results for special cases. This is

139
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illustrated in Chapter 5, where a Toeplitz matrix is interpreted as a Gram matrix
related to a pair of rational Krylov subspaces.
In this chapter the potential efficiency gain and the power of the general framework
are illustrated. Section 8.1 is based on [165] and Section 8.2 on [166]. In Section
8.1 the rational Lanczos iteration, which follows from the results in Chapter 4, is
discussed and some numerical testing is done as a proof of concept. Section 8.2
derives short recurrence relations for biorthonormal bases spanning a specific pair
of rational Krylov subspaces. Two approaches to derive these recurrence relations
are used, one based on orthogonality properties of the Euclidean inner product and
the structure of the recurrence matrix and one based on a Levinson procedure. The
specific pair of rational Krylov subspaces is related to the CMV decomposition. The
CMV decomposition received a lot of attention since its introduction into the literature
on spectral theory [41,153,179].

8.1 Rational Lanczos iteration

An efficient procedure to compute biorthonormal nested bases for rational Krylov
subspaces

K(A, v; Ξ) and K(AH , w; Θ)

is suggested by Theorem 4.6 and Lemma 5.6. If no breakdowns occur, these bases,
Vk,Wk ∈ Cm×k, span the rational Krylov subspaces

span{Vk} = span{v0, v1 . . . , vk−1} = Kk(A, v; Ξ)

span{Wk} = span{w0, w1 . . . , wk−1} = Kk(AH , w; Θ)

and are biorthonormal
WH
k Vk = I.

They are generated by the recurrence relation

AVk+1Sk = Vk+1T k,

AHWn+1T̃n = Wn+1S̃n,
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with tridiagonal pencils (T k, Sk), (T̃ k, S̃k) ∈ C(k+1)×k × C(k+1)×k. The matrices in
these pencils are

T k =:



d1 a2

b2 d2
. . .

. . . . . . ak
bk dk

bk+1

 , Sk =:



c1 u2

l2 c2
. . .

. . . . . . uk
lk ck

lk+1

 ,

T̃ k =:



γ1 µ2

λ2 γ2
. . .

. . . . . . µk
λk γk

λk+1

 , S̃k =:



δ1 α2

β2 δ2
. . .

. . . . . . αk
βk δk

βk+1,


with the poles appearing as the sub-and superdiagonal ratios

bi+1

li+1
= ξi,

βi+1

λi+1
= θi, i = 1, 2, . . . , k,

ai+1

ui+1
= θi−1,

αi+1

µi+1
= ξi−1, i = 1, 2, . . . , k − 1.

The elements appearing in the recurrence pencils follow from these ratios, biorthogonal-
ity conditions on the columns of Vk,Wk and from normalization. The expressions for
these elements can be found in Appendix B.1, the derivation is lengthy and technical
and therefore it is not included here. An implementation is available online [162].
The following short discussion is a proof of concept, it verifies that the proposed
iteration is valid. The validity of the rational Lanczos iteration is verified by applying
it to solve an eigenvalue problem. Its behavior is then compared qualitatively with
the polynomial Lanzcos iteration and with rational Krylov subspace methods. To talk
about the numerical behavior, three metrics are introduced. The biorthonormality of
these bases is quantified by the biorthonormality error

‖WH
k Vk − I‖2.

The recursion error quantifies the accuracy of the recurrence pencil,

‖WH
k+1AVk+1Sk − T k‖2.

A Ritz plot is used to visualize the accuracy of the Ritz values. The Ritz values θ(k) of
(Tk, Sk), obtained by removing the last row of (T k, Sk) and computing its eigenvalues,
are compared with the eigenvalues λ of A. Ritz plots visualize how close the k Ritz
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values θ(k)
i , 1 ≤ i ≤ k, are to the closest eigenvalue λi := min

λ
|θ(k)
i − λ|, for increasing

k. The colors show how accurate the approximation is:

red: ‖θ(k)
i − λi‖2 < 10−8,

yellow: ‖θ(k)
i − λi‖2 < 10−5,

green: ‖θ(k)
i − λi‖2 < 10−2,

blue: ‖θ(k)
i − λi‖2 ≥ 10−2.

Consider a random 50 × 50 upper triangular matrix with eigenvalues λi = i, i =
1, 2, . . . , 50. Krylov subspaces K(A, v; Ξ) and K(AH , w; Θ) are built using v = w and
Ξ = Θ := {0, 24.1, 0, 24.1, . . . }. Figure 8.1 shows the metrics and Figure 8.2 shows the
Ritz plot. The Ritz plot clearly shows that convergence is concentrated around the
chosen poles 0 and 24.1. This is the expected behavior, the convergence of rational
Krylov subspace methods can be focused on certain parts of the spectrum [143].

0 5 10 15 20 2510−16

10−7

102

k

0 5 10 15 20 2510−16

10−6

104

k

Figure 8.1: Biorthonormality and recurrence error, respectively left and right, for
the tridiagonal recurrence pencil generated by the rational Lanczos iteration, with
Ξ = Θ = {0, 24.1, 0, 24.1, . . . }.

To show the connection between convergence of eigenvalues and biorthonormality,
we choose a pole closer to an eigenvalue. This leads to faster convergence to this
eigenvalue and thus to faster loss of biorthonormality [132]. The poles chosen now
are Ξ = Θ := {0, 24 + 10−5, 0, 24 + 10−5, . . . }. Figure 8.4 shows that the eigenvalue
λ = 24 is found in fewer iterations than for the poles chosen above. The faster loss of
biorthonormality is apparent from Figure 8.3. It also shows that the quality of the
recurrence pencil is related to the biorthonormality of the bases.
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Figure 8.2: Ritz plot for the tridiagonal recurrence pencil generated by the rational
Lanczos iteration, with Ξ = Θ = {0, 24.1, 0, 24.1, . . . }. X-axis shows the size of the
pencil.
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Figure 8.3: Biorthonormality and recurrence error, respectively left and right, for
the tridiagonal recurrence pencil generated by the rational Lanczos iteration, with
Ξ = Θ = {0, 24 + 10−5, 0, 24 + 10−5, . . . }.

Note that we did not consider the case Ξ ∩ Θ = ∅, since the behavior of such
choices is not comparable with any existing Lanczos-type iterations and is subject to
future research. We conclude that the novel rational Lanczos iteration exhibits the
expected behavior, i.e., comparable to that of known iterations. Hence, its validity is
substantiated.

Remark 8.1 (The rational Lanczos iteration of Grimme). In the context of model
order reduction, Grimme and collaborators [73,74,94], discussed the use of an iteration
resembling the rational Lanczos iteration proposed here. This is the iteration related to
moment matching and multi-point Padé approximation described in Chapter 5. Their
method generates biorthonormal bases for rational Krylov subspaces with equal poles,
i.e., for K(A, v; Ξ) and K(AH , w; Ξ), and is for this choice of poles very similar to our
rational Lanczos iteration. But not the same, the recurrence pencil that they propose
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Figure 8.4: Ritz plot for the tridiagonal recurrence pencil generated by the rational
Lanczos iteration, with Ξ = Θ = {0, 24 + 10−5, 0, 24 + 10−5, . . . }. X-axis shows the
size of the pencil.

differs from a tridiagonal pencil. The structure of their recurrence pencil depends on
the chosen poles. Every time the pole changes, i.e., ξi 6= ξi−1, the tridiagonal structure
of the pencil is distorted by nonzeros in column i+ 1 and i+ 2 in the upper triangular
part of the matrices in the pencil. These nonzeros appear up to row j, with j such that
ξi = ξj, j < i. Such a peak implies that more basis vectors must be kept in memory
than for the tridiagonal pencil that we compute by using our rational Lanczos iteration.

Remark 8.2 (Moment matching). Some of the results obtained by Grimme and
collaborators are valid here. Most notably, they proved the moment matching property
of projections onto rational Krylov subspaces [73, Theorem 3]. This property is valid
for our approach, since it only makes use of the oblique projector VkWH

k onto rational
Krylov subspaces with equal poles and does not depend on the structure of the recurrence
pencil.

8.1.1 Conclusion

Based on the recurrence pencil results from Chapter 4 a rational Lanczos iteration is
proposed which generates biorthonormal bases via a three term recurrence relation.
The proposed rational Lanczos iteration is valid, its behavior resembles that of the
non-Hermitian Lanczos iteration and that of other rational Krylov subspaces methods.
Further analysis of its finite precision behavior is required to develop robust algorithms
based on this iteration. The requirements of such an algorithm will depend on the
specific problem considered. One possible avenue is to reconsider the rational Lanczos
iteration for model order reduction [73], but now starting from a more solid theoretical
background linking the bases to structured matrices.
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8.2 Nonunitary CMV decomposition

For A ∈ Cm×m and v, w ∈ Cm, 〈v, w〉E 6= 0 consider the spaces associated with
Ξ := {∞, 0,∞, 0, . . . } and Θ := {0,∞, 0,∞, . . . }

K(A, v; Ξ) = span{v,Av,A−1v,A2v,A−2v, . . . }, (8.1)

K(AH , w; Θ) = span{w,A−Hw,AHw,A−2Hw,A2Hw, . . . }. (8.2)

A Levinson procedure is used to derive short recurrence relations for biorthonormal
bases spanning these spaces. These are in fact extended Krylov subspaces [58] and
the related rational functions are Laurent polynomials

RΞ = span{1, z, z−1, z2, z−2, . . . },

RΘ = span{1, z−1, z, z−2, z2, . . . }.

If A is a unitary matrix, these subspaces are connected to the CMV-decomposition
[41,153]. Watkins [179] showed that, for a unitary matrix and v = w, an orthonormal
basis can be constructed by short recurrence relations. This orthonormal basis spans
K(A, v; Ξ) and K(AH , w; Θ) simultaneously. He also discussed the link to orthogonal
Laurent polynomials, quadrature formulas, Szegő polynomials and Toeplitz matrices.
Here the restriction to unitary matrices is dropped. The connection between extended
Krylov subspaces and Laurent polynomials implies short recurrence relations for
biorthogonal Laurent polynomials [191].
The latter is shown by making use of the Gram matrix related to the pair of extended
Krylov subspaces. The link to biorthogonal Szegő polynomials [8] and quadrature rules
is not discussed. Section 8.2.1 uses orthogonality properties to derive short recurrence
relations to construct biorthogonal bases for the pair of extended Krylov subspaces.
A sparse, factored matrix representation of these recurrence relations is given by the
recurrence matrix or pencil. The recurrence pencil is also derived in Section 8.2.2
by using a Levinson-type procedure. The link to the paper of Watkins [179] and the
CMV-decomposition [41] is elaborated on in Section 8.2.3. Section 8.2.4 discusses the
numerical properties of the proposed recurrence relations. This discussion is limited
to a proof of concept, it verifies that the recurrence relations are valid and provides an
indication of their stability.

8.2.1 Short recurrence relations

Consider a nonunitary, nonsingular matrix A ∈ Cm×m, vectors v, w ∈ Cm, 〈v, w〉E 6= 0,
and the pair of subspaces K(A, v; Ξ) (8.1) and K(AH , w; Θ) (8.2). The goal is to
construct biorthonormal bases Vl,Wl ∈ Cm×l for the finite extended Krylov subspaces
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Kl(A, v; Ξ) and Kl(AH , w; Θ), respectively. These subspaces are, for a nonnegative
integer k:
For odd l = 2k + 1,

Kl(A, v; Ξ) = span{v,Av,A−1v,A2v,A−2v, . . . , Akv,A−kv},

Kl(AH , w; Θ) = span{w,A−Hw,AHw,A−2Hw,A2Hw, . . . , A−kHw,AkHw}.

For even l = 2k + 2,

Kl(A, v; Ξ) = span{v,Av,A−1v,A2v,A−2v, . . . , Akv,A−kv,Ak+1v},

Kl(AH , w; Θ) = span{w,A−Hw,AHw, . . . , A−kHw,AkHw,A(−k−1)Hw}.

The nested biorthonormal bases satisfy

span{Vi} = span{v0, v1, . . . , vi−1} = Ki(A, v; Ξ),

span{Wi} = span{w0, w1, . . . , wi−1} = Ki(AH , w; Θ), for i = 1, . . . , l,

WH
l Vl = I.

The bases Vl,Wl are obtained by computing the basis vectors vl and wl such
that span{Vl−1, vl−1} = Kl(A, v; Ξ), span{Wl−1, wl−1} = Kl(AH , w; Θ) and vl−1 ⊥
span{Wl−1} = Kl−1(AH , w; Θ), wl−1 ⊥ span{Vl−1} = Kl−1(A, v; Ξ).
To compute vl−1, any vector x ∈ Kl(A, v; Ξ)\Kl−1(A, v; Ξ) is a valid candidate. And
for wl−1, any vector y ∈ Kl(AH , w; Θ)\Kl−1(AH , w; Θ). The choice of candidate will
influence the length of the recurrence relation generating the biorthonormal basis
vectors. We will look at two such choices, one leading to a 4-term recurrence relation
and another leading to a coupled 2-term recurrence relation.
For simplicity we assume that no breakdowns occur, neither lucky nor serious. This no-
breakdown assumption implies that 〈vl−1, wl−1〉E 6= 0 and Kl−1(A, v; Ξ) ⊂ Kl(A, v; Ξ),
Kl−1(AH , w; Θ) ⊂ Kl(AH , w; Θ).

Four term recurrence relation

A short (four term) recurrence relation is derived for the biorthonormal bases Vl and
Wl. The property 〈x, y〉E = 〈Ax,A−Hy〉E and the orthogonality properties of Vl and
Wl are the key to obtain the short recurrence relations in Theorem 8.1. The candidates
chosen here are

x =
{
Av2k−1, if l is even
A−1v2k, if l is odd

and y =
{
A−Hw2k−1, if l is even
AHw2k, if l is odd

.



NONUNITARY CMV DECOMPOSITION 147

Theorem 8.1. Let A ∈ Cm×m be a nonsingular matrix and v, w ∈ Cm, then
biorthogonal bases Vl ∈ Cm×l and Wl ∈ Cm×l can be constructed by four term
recurrence relations.
For l = 2k + 2, k ≥ 0, with v−1 = v0, v−2 = 0 and α−1,0 = 0,

η2k+1,2kv2k+1 = Av2k−1 − α2k−2,2kv2k−2 − α2k−1,2kv2k−1 − α2k,2kv2k, (8.3)

ν2k+1,2kw2k+1 = A−Hw2k−1 − β2k−2,2kw2k−2 − β2k−1,2kw2k−1 − β2k,2kw2k, (8.4)

where αi,2k = 〈Av2k−1, wi〉E and βi,2k = 〈A−Hw2k−1, vi〉E.
For l = 2k + 3, k ≥ 0, with v−1 = 0,

η2k+2,2k+1v2k+2 = A−1v2k − α2k−1,2k+1v2k−1 − α2k,2k+1v2k − α2k+1,2k+1v2k+1,
(8.5)

ν2k+2,2k+1w2k+2 = AHw2k − β2k−1,2k+1w2k−1 − β2k,2k+1w2k − β2k+1,2k+2w2k+1,
(8.6)

where αi,2k+1 = 〈A−1v2k, wi〉E and βi,2k+1 = 〈AHw2k, vi〉E. Normalization is done
by choosing ηl,l−1 and νl,l−1 such that 〈vl−1, wl−1〉E = 1. This is assumed to always
be possible, i.e., the assumption that breakdowns do not occur.

Proof. We will prove the recurrence relations (8.3) and (8.5). The proof of (8.4)
and (8.6) is analogous. Assume, without loss of generality, that l = 2k + 1. The
next basis vector v2k+1 must be constructed such that it expands K2k+1(A, v; Ξ) to
K2k+2(A, v; Ξ), i.e., vk+1 must contain a component along the direction Ak+1v. And
it must be orthogonal to K2k+1(AH , w; Θ). Consider v2k−1, with properties

v2k−1 ∈ span{v,Av,A−1v,A2v,A−2v, . . . , Ak−1v,A−k+1v,Akv} = K2k(A, v; Ξ)

⊥ span{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw} = K2k−1(AH , w; Θ).

Multiplication with A results in

Av2k−1 ∈ span{Av,A2v, v, A3v,A−1v . . . , Akv,A−k+2v,Ak+1v},

which shows that Av2k−1 has a component along the required direction Ak+1v.
And by the no-breakdown assumption, this vector will be linearly independent of
K2k+1(A, v; Ξ).
Using 〈x, y〉E = 〈Ax,A−Hy〉E , we obtain

Av2k−1 ⊥ A−Hspan{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw}

⊥ span{w,A−Hw,AHw, . . . , A(k−2)Hw,A(−k+1)Hw,A−kHw}.
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Hence, vector Av2k−1 is orthogonal with respect to K2k−2(AH , w; Θ). It remains to
orthogonalize with respect to w2k−2, w2k−1 and w2k in order to satisfy the orthogonality
condition v2k+1 ⊥ K2k+1(AH , w; Θ). Thus, (8.3) is proven, since αi,2k is chosen such
that it eliminates the aforementioned directions from Av2k−1. Similar reasoning can
be applied to construct v2k+2. Consider v2k, with properties

v2k ∈ span{v,Av,A−1v, . . . , Ak−1v,A−k+1v,Akv,A−kv}

⊥ span{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw,A−kHw}.

Multiplication with A−1 and using 〈x, y〉E = 〈A−1x,AHy〉E provides

A−1v2k ∈ span{A−1v, v, A−2v, . . . , Ak−2v,A−kv,Ak−1v,A−k−1v}

⊥ span{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw,A−kHw}.

Variables αi,2k+1 are chosen such that they eliminate the directions such that v2k+2 ⊥
K2k+1(AH , w; Θ). Thus proving (8.5).

Next, in Theorem 8.2, the matrix of recurrence coefficients is given, which has
pentadiagonal structure. This result also follows from Theorem 4.5.

Theorem 8.2. Consider a nonsingular matrix A ∈ Cm×m, v ∈ Cm and basis Vl ∈
Cm×l spanning Kl(A, v; Ξ). The matrix of recurrence coefficients Zl ∈ C(l+1)×l

satisfying
AVl = Vl+1Zl,

has pentadiagonal structure. More precisely, for hi,2k = 〈Av2k, wi〉E and, αi,2k =
〈Av2k−1, wi〉E and η2k+1,2k as a normalizing constant, i.e., as in Theorem 8.1, the
matrix Zl is the (l + 1)× l principal leading submatrix of

Z =



h0,0 α0,2 h0,2
h1,0 α1,2 h1,2

α2,2 h2,2 α2,4 h2,4
η3,2 h3,2 α3,4 h3,4

α4,4 h4,4
η5,4 h5,4

. . .


. (8.7)

Proof. Consider the recurrence relation following immediately from Equation (8.3),

Av2k−1 = α2k−2,2kv2k−2 + α2k−1,2kv2k−1 + α2k,2kv2k + η2k+1,2kv2k+1.
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This relation forms the even columns of Zl. To obtain a recurrence relation for Av2k,
i.e., the odd columns of Zl, look at the space in which this vector lives

v2k ∈ span{v,Av,A−1v, . . . , Akv,A−kv}

Av2k ∈ span{Av,A2v, v, . . . , Akv,A−k+2v,Ak+1v,A−k+1v}

⊆ span{v,Av,A−1v, . . . , A−k+1v,Akv,A−kv,Ak+1v}

= span{v0, . . . , v2k, v2k+1}.

Hence, Av2k =
∑2k+1
i=0 hi,2kvi. A short recurrence relation is obtained by looking at

orthogonality properties

v2k ⊥ span{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw,A−kHw}

Av2k ⊥ A−Hspan{w,A−Hw,AHw, . . . , A(−k+1)Hw,A(k−1)Hw,A−kHw}

⊥ span{w,A−Hw,AHw, . . . , A(k−2)Hw,A(−k+1)Hw,A−kHw,A(−k−1)Hw}

⊥ span{w0, . . . , w2k−4, w2k−3}.

Thus the short recurrence relation, with hi,2k = 〈Av2k, wi〉E , is

Av2k = h2k−2,2kv2k−2 + h2k−1,2kv2k−1 + h2k,2kv2k + h2k+1,2kv2k+1.

The four term recurrence relation contains some redundant information. This is
suggested by the similarity of the coefficients αi,l and βi,l occurring in Theorem 8.1
and verified by the low rank structure exhibited by the matrix of recurrence coefficients
Zl. Example 8.1 illustrates the low rank structure of Zl.

Example 8.1. Following the notation of Theorem 8.2, let l = 7. Then the matrix of
recurrence coefficients

Z7 =



× × ?
× × ?

? × × ?
? × × ?

? × × ?
? × × ?

? ×
? ×


,
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where × and ? denote a generic nonzero element, exhibits some low rank structure.
Namely, the pairs of nonzero elements represented as ? equal their neighboring elements
× multiplied with the same factor. Or in other words, every submatrix[

× ?
× ?

]
or
[
? ×
? ×

]
has rank equal to 1.

Two term recurrence relation

The low rank structure in the matrix of recurrence coefficients Zl from Theorem 8.2
implies that a shorter (two term) recurrence relation can be derived for the bases Vl
and Wl. To do so, the candidates for expansion are chosen from auxiliary subspaces.
These auxiliary subspaces are

K(A, v; Θ) = span{v,A−1v,Av,A−2v,A2v, . . . },

K(AH , w; Ξ) = span{w,AHw,A−Hw,A2Hw,A−2Hw, . . . }.

Thus we have four subspaces: K(A, v; Ξ), K(A, v; Θ), K(AH , w; Θ) and K(AH , w; Ξ).
Note that Property 7.1 states that following spaces are equal K2k+1(A, v; Ξ) =
K2k+1(A, v; Θ) and K2k+1(AH , w; Θ) = K2k+1(AH , w; Ξ).
The candidate vectors are chosen from the vectors which form biorthonormal bases
for the auxiliary spaces, i.e., from Ṽl, W̃l satisfying

span{Ṽi} = span{ṽ0, ṽ1, . . . , ṽi−1} = Kl(A, v; Θ),

span{W̃i} = span{w̃0, w̃1, . . . , w̃l−1} = Kl(AH , w; Ξ), for i = 1, . . . , l − 1,

W̃H
l Ṽl = I.

The recurrence relations are given in Theorem 8.3.
Theorem 8.3. Let A ∈ Cm×m be a nonsingular matrix and v, w ∈ Cm, 〈v, w〉E 6= 0,
then biorthonormal bases Vl, Wl, Ṽl and W̃l can be constructed by pairs of two term
recurrence relations.
For l = 2k + 2, k ≥ 0,

η2kv2k+1 = Aṽ2k − γ2kv2k, (8.8)

η̃2kṽ2k+1 = A−1v2k − γ̃2kṽ2k, (8.9)

ν2kw2k+1 = A−Hw̃2k − ¯̃γ2kw2k, (8.10)

ν̃2kw̃2k+1 = AHw2k − γ̄2kw̃2k, (8.11)
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where γ2k = 〈Aṽ2k, w2k〉E and γ̃2k = 〈A−1v2k, w̃2k〉E.
For l = 2k + 3, k ≥ 0,

η2k+1v2k+2 = ṽ2k+1 − γ2k+1v2k+1, (8.12)

η̃2k+1ṽ2k+2 = v2k+1 − γ̃2k+1ṽ2k+1, (8.13)

ν2k+1w2k+2 = w̃2k+1 − ¯̃γ2k+1w2k+1, (8.14)

ν̃2k+1w̃2k+2 = w2k+1 − γ̃2k+1w̃2k+1, (8.15)

where γ2k+1 = 〈ṽ2k+1, w2k+1〉E and γ̃2k+1 = 〈v2k+1, w̃2k+1〉E. Normalization
coefficients ηi, νi, η̃i and ν̃i are chosen such that 〈vi, wi〉E = 1 and 〈ṽi, w̃i〉E = 1. This
is assumed to be possible under the no-breakdown assumption.

Proof. The proof is given here for (8.8), (8.9), (8.12) and (8.13). For the remaining
recurrence relations the proof is analogous. Assume, without loss of generality,
l = 2k + 1. The next basis vector v2k+1 must be constructed such that it expands
K2k+1(A, v; Ξ) to K2k+2(A, v; Ξ), i.e., introduce a component along the direction
Ak+1v. And it must be orthogonal to K2k+1(AH , w; Θ). Consider

ṽ2k ∈ span{v,A−1v,Av, . . . , A−kv,Akv} = K2k+1(A, v; Θ)

⊥ span{w,AHw,A−Hw, . . . , A(−k+1)Hw,AkHw} = K2k(AH , w; Ξ).

Multiplication with A results in

Aṽ2k ∈ span{Av, v,A2v, . . . , A−k+1v,Ak+1v} (8.16)

⊥ A−Hspan{w,AHw,A−Hw, . . . , A(−k+1)Hw,AkHw}

⊥ span{w,AHw,A−Hw, . . . , A(k−1)Hw,A−kHw} = K2k(AH , w; Θ). (8.17)

The required component Ak+1v is present (8.16) and orthogonality is satisfied
with respect to K2k(AH , w; Θ) (8.17). Note that Aṽ2k is orthogonal to a larger
subspace of K2k+1(AH , w; Ξ) than Av2k−1, this is the key observation to explain the
shorter recurrence relation. Orthogonalization only remains to be done to eliminate
components along w2k, thus obtaining (8.8). The same derivation can be done for
ṽ2k+1, which must expand K2k+1(A, v; Θ) to K2k+2(A, v; Θ) and must be orthogonal
to K2k+1(AH , w; Ξ). Thereby proving (8.9). For v2k+2, consider ṽ2k+1

ṽ2k+1 ∈ span{v,A−1v,Av, . . . , A−kv,Akv,A−k−1v} (8.18)

⊥ span{w,AHw,A−Hw, . . . , AkHw,A−kHw} = K2k+1(AH , w; Θ). (8.19)
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The component along A−k−1v is present in ṽ2k+1 (8.18). So it only remains to enforce
the orthogonality conditions, orthogonalize along w2k+1 to obtain (8.12). Similarly
for ṽ2k+2, to obtain (8.13).

From these recurrence relations, a matrix pencil representation of the matrix of
recurrence coefficients Zl from Theorem 8.2 can be derived. This result is given in
Theorem 8.4. This representation reveals that Zl can be represented by a product of
essentially 2× 2 matrices. This allows for an efficient way to store and manipulate
this matrix on a computer.

Theorem 8.4. Consider a nonsingular matrix A ∈ Cm×m, v, w ∈ Cm and basis
Vl ∈ Cm×l spanning Kl(A, v; Ξ). The recurrence pencil (T l, Sl) ∈ C(l+1)×l × C(l+1)×l

satisfying
AVl+1Sl = Vl+1T l,

can be represented by a sparse tridiagonal pencil. More precisely, for the same
coefficients as used in Theorem 8.3, T l, Sl are, respectively, the (l + 1)× l principal
leading submatrices of

T =



γ0 η̃−1
0 (1− γ0γ̃0)

η0 −η̃−1
0 η0γ̃0

γ2 η̃−1
2 (1− γ2γ̃2)

η2 −η̃−1
2 η2γ̃2

γ4
η4

. . .



S =



1
γ1 η̃−1

1 (1− γ1γ̃1)
η1 −η̃−1

1 η1γ̃1
γ3 η̃−1

3 (1− γ3γ̃3)
η3 −η̃−1

3 η3γ̃3
. . .


.

Proof. Rewrite the pairs of recurrence relations (8.8), (8.9), (8.12) and (8.13) in matrix
notation to obtain

A
[
ṽ2k ṽ2k+1

]
=
[
v2k v2k+1

] [γ2k η̃−1
2k (1− γ2kγ̃2k)

η2k −η̃−1
2k η2kγ̃2k

]
, (8.20)

[
ṽ2k+1 ṽ2k+2

]
=
[
v2k+1 v2k+2

] [γ2k+1 η̃−1
2k+1(1− γ2k+1γ̃2k+1)

η2k+1 −η̃−1
2k+1η2k+1γ̃2k+1

]
. (8.21)
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The proof consists of substituting (8.21) into (8.20). Substitution is done as follows,
consider

A
[
ṽ2k ṽ2k+1 ṽ2k+2 ṽ2k+3

]
=
[
v2k v2k+1 v2k+2 v2k+3

] [D2k
D2k+2

]
,

(8.22)

where Di =
[
γi η̃−1

i (1− γiγ̃i)
ηi −η̃−1

i ηiγ̃i

]
. Then (8.22) can be used to obtain

A
[
ṽ2k v2k+1 v2k+2 ṽ2k+3

] 1
D2k+1

1


=
[
v2k v2k+1 v2k+2 v2k+3

] [D2k
D2k+2

]
.

Repeating this procedure for vi, ṽi, i = 0, 1, . . . , l proves the statement.

Note that the structure of the recurrence pencil appearing in Theorem 8.4 follows
from Theorem 4.6, Lemma 4.5 and Lemma 4.6.

8.2.2 Levinson procedure

The two term recurrence relation can also be derived starting from the Gram matrix
arising from the subspaces K(A, v; Ξ) and K(AH , w; Θ). The derivation here will follow
a Levinson procedure. Such procedures make use of the isomorphism between the
vector space of (i+ 1)-tuples and of polynomials of degree i. In the case studied here,
the connection between vectors vi ∈ Ki(A, v; Ξ) and Laurent polynomials ai ∈ RΞ

i (z)
is used. Similar to the definition of Kl(A, v; Ξ) and Kl(AH , w; Θ), we define, for a
nonnegative integer k:
For even l = 2k,

RΞ
l (z) = span{1, z, z−1, z2, z−2, . . . , zk, z−k},

RΘ
l (z) = span{1, z−1, z, z−2, z2, . . . , z−k, zk}.

For odd l = 2k + 1,

RΞ
l (z) = span{1, z, z−1, z2, z−2, . . . , zk, z−k, zk+1},

RΘ
l (z) = span{1, z−1, z, z−2, z2, . . . , z−k, zk, z−k−1}.
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A vector vi ∈ Ki+1(A, v; Ξ) can be written in terms of a corresponding Laurent
polynomial ai(z) ∈ RΞ

i (z), i.e., vi = ai(A)v. Similarly, wi = bi(AH)w, with wi ∈
K(AH , w; Θ) and bi(z) ∈ RΘ

i (z). By Lemma 7.2 we know that a linear functional
Lg{.} exists for which {ai(z), bi(z)}i forms a biorthonormal pair of sequences, i.e.,
Lg{ai(z)bj(z)} = δij .
The bases for the spaces RΞ and RΘ are, respectively,

BΞ =
[
1 z z−1 z2 z−2 . . .

]
,

BΘ =
[
1 z−1 z z−2 z2 . . .

]
.

Consider the Gram matrix M ,

M =



m0 m1 m−1 m2 m−2
m−1 m0 m−2 m1 m−3
m1 m2 m0 m3 m−1 . . .
m−2 m−1 m−3 m0 m−4
m2 m3 m1 m4 m0

... . . .


, (8.23)

with mi := Lg{zi} = wHAiv = 〈Aiv, w〉E . Denote by Ml the (l+ 1)× (l+ 1) principal
leading submatrix of M . The sequence of pairs {ai(z), bi(z)}li=0 is the biorthonormal
Laurent polynomial sequence following from the factorization of Ml. That is, let
ai, bi ∈ Ci+1 denote the coefficients of ai(z), bi(z) in the basis BΞ

i+1, B
Θ
i+1 ∈ Cm×(i+1),

respectively. Then Miai =
[
0 . . . 0 ×

]> and b>i Mi =
[
0 . . . 0 ×

]
. These

are matrix representations of the orthogonality conditions [51, p.44] imposed on the
biorthonormal Laurent polynomials.
The goal is to obtain short recurrence relations to construct the sequence {ai(z), bi(z)}i
by analyzing the displacement structure ofM . The coupled short recurrence relation is
given in Theorem 8.5. First we sketch the main ideas and introduce the tools required
to prove this theorem.
As is illustrated above, a good choice of candidate to expand the biorthonormal
sequence is paramount to obtaining short recurrence relations. To this end, an auxiliary
sequence of biorthonormal Laurent polynomials {ãi(z), b̃i(z)}li=0 is introduced, which
follows from the factorization of the Gram matrix M̃l = M>l . Let ãi, b̃i ∈ Ci+1

denote their coefficients in the bases BΘ
i+1, B

Ξ
i+1 ∈ Cm×(i+1), respectively. Then

M̃iãi =
[
0 . . . 0 ×

]> and b̃>i M̃i =
[
0 . . . 0 ×

]
.

Furthermore, a matrix S2k+1 ∈ C(2k+2)×(2k+2) allowing to switch between bases BΞ
2k+1
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and BΘ
2k+1 for RΞ

2k+1 = RΘ
2k+1 is the permutation matrix

S2k+2 :=



1
0 1
1 0

0 1
1 0

. . .
0 1
1 0


.

This matrix satisfies BΞ
2k+1 = BΘ

2k+1S2k+1 and S2
2k+1 = I.

Matrices which represent multiplication with z in BΞ
2k+1 and with z−1 in BΘ

2k+1 are
the last required components for the proof. These representations can be obtained
by using the techniques from Chapter 5. Consider the decomposition (5.3) of BΞ

2k+1,
with the Vandermonde matrix Vi :=

[
1 z . . . zi−1],

BΞ
2k+1 = z−kV2k+1

(
PΞ

2k+1
)>
.

The permutation matrix PΞ
2k+1 can be generated by Algorithm 5 and is, with canonical

unit vectors ei ∈ C2k+1,
PΞ

2k+1 =
[
e2k+1 . . . e5 e3 e1 e2 e4 . . . e2k

]
.

From this decomposition and zVi = ViZi + zie>i , with Zi ∈ Ci×i the leftshift matrix,
the representation for the multiplication with z can be obtained

zBΞ
2k+1 = z−kzV2k+1

(
PΞ

2k+1
)>

= z−kV2k+1Zk+1
(
PΞ

2k+1
)> + z−kz2k+1e>2k+1

(
PΞ

2k+1
)>

= z−kV2k+1
(
PΞ

2k+1
)>︸ ︷︷ ︸

=:BΞ
2k+1

PΞ
2k+1Z2k+1

(
PΞ

2k+1
)>︸ ︷︷ ︸

=:ZΞ
2k+1

+zk+1e>2k+1

= BΞ
2k+1Z

Ξ
2k+1 + zk+1e>2k+1.

The matrix ZΞ
2k+1 is the (2k + 1)× (2k + 1) leading principal submatrix of

Z =



0 0 1 0 0 0
1 0 0 0 0

0 0 1 0
1 0 0

0 0
1 0

. . .


.
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For z−1BΘ
2k+1 a similar derivation results in z−1BΘ

2k+1 = BΘ
2k+1Z

Θ
2k+1 + z−2k−1e>2k+1,

with ZΘ
2k+1 =

(
ZΞ

2k+1
)>.

Theorem 8.5. Consider the Laurent polynomials ai(z), b̃i(z) ∈ RΞ
i (z) and

ãi(z), bi(z) ∈ RΘ
i (z). If they are constructed via

η2ka2k+1(z) = zã2k(z)− γ2ka2k(z),

η̃2kã2k+1(z) = z−1a2k(z)− γ̃2kã2k(z),

ν2kb2k+1(z) = z−1b̃2k(z)− ¯̃γ2kb2k(z),

ν̃2k b̃2k+1(z) = zb2k(z)− γ̄2k b̃2k(z),

η2k+1a2k+2(z) = ã2k+1(z)− γ2k+1a2k+1(z),

η̃2k+1ã2k+2(z) = a2k+1(z)− γ̃2k+1ã2k+1(z),

ν2k+1b2k+2(z) = b̃2k+1(z)− γ̄2k+1b2k+1(z),

ν̃2k+1b̃2k+2(z) = b2k+1(z)− ¯̃γ2k+1b̃2k+1(z),

with coefficients γ2k = {zã2k(z), b2k(z)}, γ̃2k = Lg{z−1a2k(z), b̃2k(z)}, γ2k+1 =
Lg{ã2k+1(z), b2k+1(z)} and γ̃2k+1 = Lg{a2k+1(z), b̃2k+1(z)}, then the sequences
{ai(z)}i and {bi(z)}i form biorthonormal Laurent polynomials. That is, if ηi, νi
are chosen such that Lg{ai(z), bi(z)} = 1, then Lg{ai(z), bj(z)} = δij, biorthogonal
with respect to the linear functional from Lemma 7.2. Similarly for {ãi(z)}i and
{b̃i(z)}i.

Proof. The proof is given by induction and follows a Levinson procedure. Consider
the Gram matrix M0 :=

[
m0
]
, then a0 := m

−1/2
0 and b0 := m

−1/2
0 satisfy the

biorthonormality condition Lg{a0, b0} = 1. Assume that we possess a2k+1(z), ã2k+1(z)
with coefficients an, ãn ∈ Cn+1 with respect to bases BΞ

2k+1 and BΘ
2k+1, respectively,

satisfying

M2k+1a2k+1 =


0
...
0
×

 and M̃2k+1ã2k+1 =


0
...
0
×

 .
From the coefficients of a2k+1(z) and ã2k+1(z) we want to compute the coefficients for
a2k+2(z) and ã2k+2(z). These can be obtained from the linear combinations of the
coefficients of a2k+1(z), ã2k+1(z), z−1a2k+1(z) and zã2k+2(z), which follows from the
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derivation below. Let a2k+2 ∈ C2k+2 represent the coefficients of a2k+2(z) in the basis
BΞ

2k+2 for RΞ
2k+1, then it must satisfy

M2k+2a2k+2 =


0
...
0
×

 .
Candidates for the expansion from RΞ

2k to RΞ
2k+1 are za2k+1(z) and zã2k+1(z). From

the displacement structure of M2k+2 it follows that these result in

M2k+2Z
Ξ
k+2

[
a2k+1

0

]
=



0
...
0
×
0
×
0


and M2k+2Z

Ξ
k+2

[
S2k+1ã2k+1

0

]
=


0
...
0
α̃n
τ̃n

 .

Since the embedding of a2k+1(z) in RΞ
2k+2 leads to

M2k+2

[
a2k+1

0

]
=


mk+1

M2k+2 mk

...
m−k−1 m−k . . . m0


[
a2k+1

0

]
=


0
...
0
τn
αn

 ,

the candidate leading to the shortest recurrence relation is zã2k+1(z). It is easy to verify
that η2k+1a2k+2 = ZΞ

2k+2
[
S2k+1ã2k+1 0

]>−γ2k+1
[
a2k+1 0

]>, with γ2k+1 = α̃2k+1
τ2k+1

,
will satisfy the orthogonality condition. Similarly for ãn+1(z), the recurrence relation
is η̃2k+1ã2k+2(z) = z−1a2k+1(z) − γ̃2k+1ã2k+1(z), with γ̃2k+1 = α2k+1

τ̃2k+1
. Hence, the

recurrence relations for odd indices has been shown.
Now, we consider even indices, i.e., 2k+2. The spaces are not the sameRΞ

2k+2 6= RΘ
2k+2.

Moreover, the term needed to expand RΞ
2k+2 to RΞ

2k+3 appears in the space RΘ
2k+2,

that is, z−k−1 ∈ RΘ
2k+2. The biorthonormal Laurent polynomial can thus be used to

expand RΞ
2k+2 and leads to a short recurrence relation since

M2k+3

[
a2k+2

0

]
=


0
...
0

τ2k+2
α2k+2

 and M2k+3S2k+3

[
ã2k+2

0

]
=


0
...
0

α̃2k+2
τ̃2k+2

 .
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Note that the use of the matrix S2k+3 is appropriate, since the embedding[
ã2k+2 0

]
of ã2k+2(z) into RΘ

2k+3 is an element of RΘ
2k+3 = RΞ

2k+3. Then,
η2k+2a2k+3 = S2k+3

[
ã2k+3 0

]> − γ2k+3
[
a2k+3 0

]>, γ2k+3 = α̃2k+3
τ2k+3

construct the
next biorthonormal Laurent polynomial a2k+3(z). Similarly ã2k+3(z) can be shown to
satisfy η̃2k+2a2k+3(z) = ã2k+2(z)− γ̃2k+2a2k+2(z), γ̃2k+2 = α2k+2

τ̃2k+2
.

The proof of the recurrence relations for bi(z), b̃i(z) can be done in a similar way.

8.2.3 Connection to the CMV decomposition

To retrieve the results reported by Watkins [179], it suffices to consider the same
starting vector for all spaces v = w and a unitary matrix U . The following corollaries
summarize the results for the CMV decomposition which are given above for general
matrices.
For the CMV decomposition, the two pairs of four term recurrence relations from
Theorem 8.1 collapse into one pair of recurrence relations. The corresponding
recurrence matrix is unitary. These results are given in Corollary 8.1 and 8.2,
respectively.
Corollary 8.1. Consider a unitary matrix U ∈ Cm×m and h ∈ Cm. Then, with
normalization of ηi such that 〈vi, vi〉E = 1,

η2k+1,2kv2k+1 = Uv2k−1 − α2k−2,2kv2k−2 − α2k−1,2kv2k−1 − α2k,2kv2k,

η2k+2,2k+1v2k+2 = UHv2k − α2k−1,2k+1v2k−1 − α2k,2k+1v2k − α2k+1,2k+1v2k+1.

Corollary 8.2. Consider a unitary matrix U ∈ Cm×m, h ∈ Cm and an orthogonal
basis Vl ∈ Cm×l for Kl(U, v; Ξ). Then the orthogonal projection of U onto Kl(U, v; Ξ),

V Hl UVl = Zl, (8.24)

is a unitary matrix Zl ∈ Cl×l with pentadiagonal structure.

For the two term recurrence relations, given in Theorem 8.3, the four pairs of recurrence
relations collapse into two pairs. The coefficients also simplify, since γ̃ = γ̄. The
result is stated in Corollary 8.3. The related recurrence pencil consists of two unitary
tridiagonal matrices, Corollary 8.4 states this result.
Corollary 8.3. Consider a unitary matrix U ∈ Cm×m and h ∈ Cm. Then, with
normalization of ηi and η̃i such that 〈vi, vi〉E = 1 and 〈ṽi, ṽi〉E = 1, the recurrence
relations (8.8) - (8.15) become

η2kv2k+1 = Uṽ2k − γ2kv2k,

η̃2kṽ2k+1 = UHv2k − γ̃2kṽ2k,
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and

η2k+1v2k+2 = ṽ2k+1 − γ2k+1v2k+1,

η̃2k+1ṽ2k+2 = v2k+1 − γ̃2k+1ṽ2k+1.

The vectors vi, ṽi, i = 0, 1, . . . , l, form orthogonal bases for Kl(U, h) and Sl(U, h),
respectively.

Corollary 8.4. Consider a unitary matrix U ∈ Cm×m, a vector h ∈ Cm and an
orthogonal basis Vl ∈ Cm×(l+1) for Kl(U, v; Ξ). The matrix pencil of recurrence
coefficients (T l, Sl), with T l, Sl ∈ C(l+1)×l satisfying

AVl+1Sl = Vl+1T l,

can be represented by two unitary tridiagonal matrices with the same sparsity structure
as in Theorem 8.4.

The recurrence relations for the Laurent polynomials simplify in a similar manner,
stated in Corollary 8.5.

Corollary 8.5. Consider Laurent polynomials ai(z) ∈ RΞ
i (z) and ãi(z) ∈ RΘ

i (z). If
these are constructed as

η2ka2k+1(z) = zã2k(z)− γ2ka2k(z),

η̃2kã2k+1(z) = z−1a2k(z)− γ̃2kã2k(z),

η2k+1a2k+2(z) = ã2k+1(z)− γ2k+1a2k+1(z),

η̃2k+1ã2k+2(z) = a2k+1(z)− γ̃2k+1ã2k+1(z),

where γ2k = Lg{zã2k(z), a2k(z)}, γ2k+1 = Lg{ã2k+1(z), a2k+1(z)} , γ̃i = γ̄i and ηi,
η̃i are chosen such that 〈vi, vi〉E = 1, 〈ṽi, ṽi〉E = 1, respectively. Then the sequence
{ai(z)}i is a sequence of orthogonal Laurent polynomials. That is, 〈ai(z), aj(z)〉g = δij ,
with respect to the inner product from Lemma 7.1. Similarly for the sequence {ãi(z)}i.
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8.2.4 Numerical behavior

The numerical behavior of the proposed four and two term recurrence relations
from Theorem 8.1 and Theorem 8.3 is analyzed. The matrices A ∈ Cm×m used are
restricted to well-conditioned normal matrices. Testing the recurrence relations with
these matrices will shed some light on the stability of the methods. We are interested
in the biorthogonality of the generated bases and the quality of the recurrence matrix
or pencil. The generated bases Vk,Wk ∈ Cm×k span the Krylov subspaces Kk(A, v; Ξ)
and Kk(AH , v; Θ), respectively, where Ξ = {∞, 0,∞, 0, . . . } and Θ = {0,∞, 0,∞, . . . }.
The biorthonormality of these bases is quantified by the biorthonormality error

‖WH
k Vk − I‖2,

The recursion errors are, for the recurrence matrix from Theorem 8.2,

‖AVk − Vk+1Zk+1‖2
‖A‖2

and, for the recurrence pencil from Theorem 8.4,

‖AVkSk − VkTk‖2
‖A‖2

.

Two other metrics are useful in order to interpret the results. These are the condition
number of the matrix or pencil and the growth factor. The growth factor is defined,
for the four and two term recurrence relation respectively, as

ρ := max (|Zk|)
max (|A|) and ρ := max (max(|Tk|, |Sk|))

max (|A|) .

The growth factor provides a metric for stability. Throughout this section a modest
size of matrices is chosen, a dimension of m = 200. This can be done without loss
of generality, larger matrices (with the same properties) do inherently cause larger
numerical errors, however the numerical behaviour remains similar.

Unitary matrices

Consider the case corresponding to the CMV decomposition, U ∈ Cm×m is a unitary
matrix and the starting vectors are equal v = w ∈ Cm. Let m = 200 and v be a
random vector. Figure 8.5 shows the biorthonormality and recursion error, both errors
are low. When the dimension of the subspaces k approaches the dimension of the
matrix m, biorthonormality is lost more rapidly since the Ritz values (i.e., eigenvalues
of the recurrence matrix or pencil) start to accurately approximate the eigenvalues of
U . Furthermore, the matrices, Zk, Sk and Tk are close to unitary. Hence, for a unitary
matrix and v = w, the CMV case is retrieved.
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Figure 8.5: Biorthogonality and recursion error, respectively left and right, for a
unitary matrix U ∈ C200×200 and v = w. Two term recurrence relation in blue and
four term recurrence relation in red.

Scaled and shifted unitary matrices

Consider scaled and shifted unitary matrices, i.e., for a unitary matrix U ∈ Cm×m,
starting vectors v = w and scalars α, λ ∈ R, A = (αU + λI) ∈ Cm×m. Figure 8.6
shows the biorthonormality and recursion error for α = 1.1 and λ = 0. Both errors are
still small, however compared to the unitary case, shown in Figure 8.5, they are larger.
The recursion error increases steadily from k = 55 and k = 120, for the two and four
term recurrence relations, respectively. This can be (at least partially) explained by
the increasing growth factor ρ, which is approximately ρ(k) = αk. Figure 8.7 shows
the errors for the choice α = 1 and λ = 0.1. The two term recurrence relation performs
better than the four term recurrence relation, especially in terms of the recursion error.
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10−13
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k

Figure 8.6: Biorthonormality and recursion error, respectively left and right, for a
scaled unitary matrix αU ∈ C200×200, with α = 1.1 and v = w. Two term recurrence
relation in blue and four term recurrence relation in red.
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Figure 8.7: Biorthonormality and recursion error, respectively left and right, for a
shifted unitary matrix (U + λI) ∈ C200×200, with λ = 0.1 and v = w. Two term
recurrence relation in blue and four term recurrence relation in red.

General normal matrices

Consider a normal matrix A ∈ Cm×m with condition number κ(A) = 10 and starting
vectors v, w ∈ Cm, not necessarily equal. The errors are shown in Figure 8.8. The
two and four term recurrence relations have similar behavior. Biorthonormality is
lost quickly and there is no Ritz value which approximates an eigenvalue accurately.
Hence, this loss of biorthonormality is due to the error propagation in the recurrence
relations themselves, the two term recurrence relation preserves biorthonormality
better as k increases. Figure 8.9 shows the magnitude of the entries in the Gram
matrix WH

20V20 − I. There is clearly a pattern visible, however further research into
the numerical properties of the recurrence relation must be done in order to interpret
this.

0 5 10 15 2010−16
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Figure 8.8: Biorthonormality and recursion error, respectively left and right, for a
normal matrix A ∈ C200×200, with condition number κ(A) = 10 and v 6= w. Two term
recurrence relation in blue and four term recurrence relation in red.
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Figure 8.9: Magnitude (base 10) of the elements appearing in the Gram matrix
WH

20V20 − I for the two and four term recurrence relation on the left and right,
respectively. Bases V,W are constructed for a normal matrix A with κ(A) = 10 and
v 6= w.

8.2.5 Conclusion

The study of structures in matrices allows to derive short recurrence relations. Low
rank structure in recurrence matrices indicate that a certain redundancy appears in
the underlying recurrence relation and a shorter (coupled) recurrence relation can be
derived. The displacement structure of the related Gram matrix can also be used to
derive short recurrence relations. The coupled two term recurrence relations are shown
to outperform the four term recurrence relation in terms of the biorthonormality of
the generated bases and the quality of the recurrence pencil.





Chapter 9

Inverse eigenvalue problems

This chapter is dedicated to numerical procedures for the computation of sequences
of polynomials and rational functions with prescribed poles that are orthogonal with
respect to a discrete inner product or linear functional. Discrete inner products of the
form

〈f, g〉m =
m∑
i=1
|αi|2f(zi)g(zi) (9.1)

and discrete linear functionals of the form

L{fg}m =
m∑
i=1

β̄iαif(zi)g(zi) (9.2)

are considered. Three mathematically equivalent formulations are discussed:
computing the recurrence coefficients of a sequence of (bi)ORFs, computing the LR
factorization of a Gram matrix containing the moments of a sequence of (nonorthogonal)
rational functions and constructing a structured pencil from given spectral data, that
is, an inverse eigenvalue problem (IEP). These three formulations are discussed in
Section 9.1. The IEPs related to (bi)ORFs are identified, these impose Hessenberg
and tridiagonal structure on the pencil. An overview of some solution strategies
for these three formulations is provided. The remainder of this chapter focuses on
solution strategies for IEPs formulated for (bi)OPs and (bi)ORFs. Since the rational
Arnoldi and Lanczos iteration constructs a Hessenberg and tridiagonal recurrence
pencil, respectively these are suited to solve the IEPs. Section 9.2 provides the details.
The connection between (bi)ORFs and (tridiagonal) Hessenberg pencils can also be
used directly, without explicit use of Krylov subspaces. Section 9.3 and Section 9.4
propose updating strategies for the IEPs related to (bi)OPs and (bi)ORFs. Updating
procedures assume the availability of a sequence of (bi)ORFs with respect to 〈., .〉m
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(or L{.}m) and compute, starting from this sequence, the sequence for 〈., .〉m+1 =
〈., .〉m + wm+1f(zm+1)g(zm+1) (or L{.}m+1 = L{.}m + wm+1f(zm+1)g(zm+1)). For
OPs we propose a novel parallelizable updating procedure. For ORFs, the pencil
approach is new and so are the proposed procedures, these results are published
in [167]. Section 9.5 contains numerical experiments for the proposed procedures.
Downdating procedures compute a sequence of (bi)ORFs with respect to 〈., .〉m (or
L{.}m) when the sequence with respect to 〈., .〉m+1 = 〈., .〉m + αm+1f(zm+1)g(zm+1)
(or L{.}m+1 = L{.}m + β̄m+1αm+1f(zm+1)g(zm+1)) is available. The problem of
downdating is more difficult than updating, due to its inherent ill-conditioning [25,60].
Downdating procedures for discrete inner products are proposed in Section 9.6.
The results for downdating procedures will be published in a paper that is in
preparation [164].

9.1 Problem reformulation

The main problem is that of constructing rational functions with prescribed poles
orthogonal with respect to a discrete inner product (9.1) or linear functional (9.2). A
sequence of (bi)ORFs can be represented in a given basis of rational functions or it can
be represented by its recurrence pencil. The first representation depends strongly on
the choice of a good basis to represent the sequence. The second representation uses
the (bi)ORFs themselves as the basis, moreover, it does so in an implicit manner, see
Chapter 6 and Chapter 7 for details of how a recurrence pencil represents a sequence
of rational functions.
Three mathematically equivalent formulations of the main problem are introduced in
this section. A functional and structured matrix problem require a recurrence pencil,
these are introduced in Section 9.1.1 and Section 9.1.3, respectively. Section 9.1.2
introduces the Gram matrix formulation, based on Lemma 2.2. This formulation
leads to a solution represented in the basis used to generate the Gram matrix. The
equivalence between the three formulations follows largely from the discussion in above
chapters, the IEP formulation is derived in detail in Section 9.1.3. Section 9.1.4 shortly
recapitulates the connections between the three formulations.

9.1.1 Functional problem

Problem 9.1 introduces the orthogonal case, i.e., orthonormality with respect to 〈., .〉m.

Problem 9.1 (Generate ORFs). Given nodes {zi}mi=1, zi ∈ C and weights {αi}mi=1,
αi ∈ C, determining the inner product 〈f, g〉m :=

∑m
i=1 |αi|2f(zi)g(zi). Let Ξ =

{ξi}m−1
i=1 be a set of given poles ξi ∈ C and let r0 ≡

√∑m
i=1 |αi|2. Compute a sequence

{rk}m−1
k=0 of rational functions rk ∈ RΞ

k \RΞ
k−1 which are orthonormal with respect to
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〈., .〉m, i.e.,

〈ri, rj〉m

{
= 0, if i 6= j

= 1, if i = j
.

Problem 9.2 replaces the inner product by a linear functional Lm{.}, thus leading to
biorthonormal rational functions.

Problem 9.2 (Generate biORFs). Given nodes {zi}mi=1, zi ∈ C and weights
{αi}mi=1, {βi}mi=1, αi, βi ∈ C, which determine a linear functional Lm{f, g} :=∑m
i=1 β̄iαif(zi)g(zi). Let Ξ = {ξi}m−1

i=1 , Θ = {θi}m−1
i=1 be sets of given poles ξi, θi ∈ C.

And let r0, s0 be given constants such that Lm{r0s0} = 1. Compute a pair of sequences
{rk}m−1

k=0 , {sk}m−1
k=0 of rational functions rk ∈ RΞ

k \RΞ
k−1, sk ∈ RΘ

k \RΘ
k−1 which are

biorthonormal with respect to Lm, i.e.,

Lm{risj}

{
= 0, if i 6= j

= 1, if i = j
.

When all poles are chosen to be infinite ξi =∞, Problem 9.1 reduces to generating
OPs and Problem 9.2 to generating biOPs. The polynomial problems will be treated
separately in the sequel and not just as a special case of the rational function problem.
Stieltjes-like procedures [70,79–81,83,84,138,140] can be used to solve Problem 9.1
and Problem 9.2. The discretized Stieltjes procedure for OPs is provided in Algorithm
6. This procedure [78] computes alternately recurrence coefficients for pi, the ith
orthogonal polynomial, and the value of pi for the given (discrete) inner product,
which can then be used to compute the recurrence coefficients of pi+1 and so on.
For ORFs this Stieltjes procedure can be combined with a modification of the inner
product by division with a polynomial [80,81,83]. Or, a Stieltjes-like procedure can
be developed based on recurrence relations for ORFs [138]. This idea is not pursued
further. Since, based on observations and results for the classical OP case, it is
expected that methods based on IEPs will provide a more accurate solution at the
same or lower cost.
These observations are summarized now, with the necessary references. For discrete
inner products with m nodes on the real line and i approaching m, the Stieltjes
procedure for OPs may suffer accuracy loss due to the underlying three term recurrence
relation exhibiting pseudostability [69, 79,80, 83]. This can lead to large errors on the
computed recurrence coefficients. Gautschi mentioned, after analyzing the effect of
pseudostability on the Stieltjes procedure, that the method by Gragg and Harrod [92]
does not suffer from the pseudostability of the underlying three term recurrence
relation. Their method solves an IEP with unitary similarity transformations on
a diagonal matrix, for details see Section 9.1.3. Also Reichel [140] noted that this
method achieves the same accuracy as the Stieltjes procedure and better accuracy
as i approaches m. While these observations are made for OPs, we expect that for



168 INVERSE EIGENVALUE PROBLEMS

ORFs the behavior is similar. That is, methods based on IEPs will lead to the most
numerically stable methods.

9.1.2 Gram matrix problem

Orthogonal rational functions {ri}m−1
i=0 for 〈., .〉m are the rational functions for which

the associated Gram matrix is the identity matrix[
〈ri, rj〉m

]m−1
j,i=0 = I.

Starting from any sequence of rational functions {r̂i}m−1
i=0 satisfying r̂i ∈ RΞ

i \RΞ
i−1, a

sequence of ORFs can be generated. The factorization of the Gram matrix for the
sequence {r̂i}i generated by 〈., .〉m or Lm{.} provides recurrence coefficients for the
ORFs in the basis r̂ :=

[
r̂0 r̂1 . . . r̂m−1

]
. For an inner product the Gram matrix

is Hermitian positive definite and, therefore, a Cholesky decomposition can be used.
The factor R, more precisely R̄−1, obtained by solving Problem 9.3 contains in its
columns the coefficients for the ORFs {ri}i in the basis r̂.

Problem 9.3 (Generate ORFs: Gram matrix). Given any sequence of rational
functions {r̂i}m−1

i=0 , with r̂i ∈ RΞ
i \RΞ

i−1, and the corresponding moments µ̂j,i =
〈r̂i, r̂j〉m. Let M̂ =

[
µ̂j,i
]m−1
j,i=0 be the associated Gram matrix. Compute the Cholesky

factorization of M̂ = RHR.

Linear functionals do not guarantee a positive definite Gram matrix. Assume the
given discrete linear functional is quasi-definite, then Problem 9.4 has a solution.

Problem 9.4 (Generate biORFs: Gram matrix). Given any pair of sequences of
rational functions {r̂i}m−1

i=0 and {ŝi}m−1
i=0 , with r̂i ∈ RΞ

i \RΞ
i−1 and ŝi ∈ RΘ

i \RΘ
i−1

Consider the corresponding moments µ̂j,i = Lm{r̂iŝj} and the Gram matrix, which is
assumed to be strongly nonsingular, M̂ =

[
µ̂j,i
]m−1
j,i=0. Compute the LR factorization of

M̂ = LR.

The computation of the LR factorization is numerically unstable since pivoting
strategies are not allowed.
For the orthogonal formulation, an alternative problem can be formulated, avoiding
the need to construct a Gram matrix. This alternative problem is formulated in terms
of the QR factorization of the Vandermonde-like matrix

α1
α2

. . .
αm



r̂0(z1) r̂1(z1) . . . r̂m−1(z1)
r̂0(z2) r̂1(z2) . . . r̂m−1(z2)

...
...

...
r̂0(zm) r̂1(zm) . . . r̂m−1(zm)

 .
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For details we refer to Chapter 5.

9.1.3 Structured matrix problem

The following problems are formulated by relying on results discussed in Chapter 6
and Chapter 7, more precisely, the connection between (bi)ORFs and (bi)orthonormal
bases for rational Krylov subspaces. This connection is provided in Lemma 7.1 and
Lemma 7.2 for orthogonal and biorthogonal rational functions, respectively. When
these lemmas are applied to a diagonal matrix A = Λ = diag({zi}i), the recurrence
relation for (bi)orthonormal bases in matrix notation can also be interpreted as a
generalized eigenvalue decomposition (GEVD) for the recurrence pencil. Details are
provided below. Now we sketch the general idea of how this interpretation leads to an
IEP.
The interpretation of the matrix form of the recurrence relations for ORFs as a GEVD
of a structured pencil allows a reverse argument. Namely, a pencil with a specific
structure and certain spectral data is a recurrence pencil for (bi)ORFs with respect to
some discrete inner product or linear functional. Imposing spectral data and searching
for a pencil with a certain structure, denoted as belonging to a class of matrix pencils
N , is a structured inverse eigenvalue problem. Problem 9.5 provides the definition of
a structured IEP [27,44].

Problem 9.5 (Structured IEP-matrix formulation). Given a diagonal matrix Λ =
diag(z1, . . . , zm) ∈ Cm×m, zi 6= zj for i 6= j, and vectors v, w ∈ Cm. Find a pencil
(B,C) ∈ N and V ∈ Cm×m, where V e1 = v

ν and V −He1 = w
η , with η̄ν = 〈v, w〉E =

wHv 6= 0, such that
V −1ΛV C = B. (9.3)

The derivation and the formulation of four structured IEPs related to (bi)OPs and
(bi)ORFs are provided below. The structure that is imposed on the pencil (B,C) in
Problem 9.5 determines the function class and type of orthogonality. A short overview
of relevant pencil structures in IEPs is given together with some references where they
appear:

• OPs: N1 = {Hessenberg matrices}, Problem 9.7.

• OPs on R: N2 = {Jacobi matrices}, see literature [52,92].

• OPs on T, the unit circle: N3 = {unitary Hessenberg matrices}, see literature
[1, 142].

• BiOPs: N4 = {tridiagonal matrices}, Problem 9.9.

• ORFs: N5 = {Hessenberg pencils}, Problem 9.6.
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• ORFs: N6 = {Semi-separable plus diagonal}, see literature [161].

• ORFs: N7 = {extended Hessenberg matrix}, see literature [128].

• BiORFs: N8 = {tridiagonal pencils}, Problem 9.8.

• BiORFs: N9 = {extended tridiagonal matrix}, see literature [128].

As can be seen in the overview, the formulation for (bi)ORFs as a matrix IEP, N6, N7
and N9, is discussed in literature already. The formulation as a pencil IEP, N5 and
N8 is novel and so are the procedures that will be proposed. The pencil formulation
provides more flexibility than the single matrix representations, and the expectation
is that this flexibility can be used to obtain procedures with better numerical stability
properties.
First IEPs for rational functions orthogonal with respect to an inner product are
introduced and afterwards for rational functions biorthonormal with respect to a linear
functional. Afterwards an introduction into two possible solution strategies is given,
one uses Krylov subspaces methods to generate (bi)orthonormal bases and the other
uses an updating procedure.

IEP for ORFs

The correspondence between recurrence relations for ORFs and a GEVD for a
structured pencil is clarified. This allows the formulation of Problem 9.6. Corollary
9.1 relates ORFs with a discrete inner product to an orthonormal basis for a rational
Krylov subspace.

Corollary 9.1 (Recurrence pencil equivalence: ORFs). A sequence of rational
functions {ri}m−1

i=0 in RΞ
m−1 orthonormal with respect to

〈f, g〉m =
m∑
i=1
|αi|2f(zi)g(zi)

is generated by the same recurrence coefficients as the nested orthonormal basis {qi}m−1
i=0

for Km(Λ, v; Ξ), where Λ = diag({zi}mi=1), v =
[
α1 . . . αm

]>.
Proof. Follows from Lemma 7.1 and Theorem 7.1.

This corollary implies that a Hessenberg pencil (H,K) ∈ Cm×m × Cm×m satisfying

ΛQK = QH, (9.4)
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with Λ = diag({zi}mi=1), Qe1 = v/‖v‖, span{Q} = Km(Λ, v; Ξ) and QHQ = I, also
satisfies

zrK = rH, (9.5)

with r =
[
r0 . . . rm−1

]
forming a sequence of ORFs in RΞ

m−1 for the discrete inner
product 〈f, g〉m =

∑m
i=1 |αi|2f(zi)g(zi).

From the equivalence between (H,K) in (9.4) and in (9.5) it is easy to derive the
following equality relating Q, the orthonormal basis for K(Λ, v; Ξ), to r, the sequence
of rational functions in RΞ orthonormal to 〈., .〉m,

Q =


α1r0(z1) α1r1(z1) . . . α1rm−1(z1)
α2r0(z2) α2r1(z2) . . . α2rm−1(z2)

...
...

...
αmr0(zm) αmr1(zm) . . . αmrm−1(zm)

 .
The correspondence of orthonormality for {qi}m−1

i=0 with respect to 〈., .〉E to the
orthonormality of {ri}m−1

i=0 with respect to 〈., .〉m follows from the equality of their
respective Gram matrices. Both Gram matrices are equal to QHQ,

I = QHQ =


∑m
i=1 |αi|2r0(zi)r0(zi) . . .

∑m
i=1 |αi|2r0(zi)rm−1(zi)∑m

i=1 |αi|2r1(zi)r0(zi) . . .
∑m
i=1 |αi|2r1(zi)rm−1(zi)

...
...∑m

i=1 |αi|2rm−1(zi)r0(zi) . . .
∑m
i=1 |αi|2rm−1(zi)rm−1(zi)



=


〈r0, r0〉m . . . 〈r0, rm−1〉m
〈r1, r0〉m . . . 〈r1, rm−1〉m

...
...

〈rm−1, r0〉m . . . 〈rm−1, rm−1〉m

 = I.

The key observation that must be made is that Equation (9.4) represents the
recurrence relation for the orthonormal basis vectors for Km(Λ, v; Ξ) and simultaneously
it represents the generalized eigenvalue decomposition of the pencil (H,K), with
eigenvalues {zi}i and eigenvectors the columns of QH .
From (9.5) follows that the eigenvalues {zi} correspond to the nodes of 〈., .〉m. The
weight |αi|2, more precisely αi, appears as the first element of the normalized
eigenvector corresponding to zi, this follows from QHei = ᾱir(zi). Now that the
location of the nodes and weights of 〈., .〉m in the GEVD of the recurrence pencil
is known, an IEP can be formulated for this pencil. Problem 9.6 introduces the
Hessenberg pencil IEP.

Problem 9.6 (Hessenberg pencil inverse eigenvalue problem (HPIEP) N5). Given
a diagonal matrix Λ = diag(z1, . . . , zm) of distinct nodes zi ∈ C, a vector of weights
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v ∈ Cm and a set of poles Ξ = {ξi}m−1
i=1 , ξi ∈ C. Construct a Hessenberg pencil

(Hm,Km) ∈ Cm×m, with hi+1,i
ki+1,i

= ξi, i = 1, 2, . . . ,m − 1, and a unitary matrix
Qm ∈ Cm×m such that

QHmΛQmKm = Hm and Qme1 = v

‖v‖
. (9.6)

The uniqueness of the solution to Problem 9.6 follows from the implicit Q theorem
for Hessenberg pencils [40, Theorem 5.1], which states a one-to-one correspondence
between proper Hessenberg pencils and rational Krylov subspaces.
The polynomial case is retrieved by choosing ξi =∞ for all i. We formulate the related
IEP in Problem 9.7, because it is an important special case for which many results
and procedures exist and for which we will propose a new parallelizable approach in
Section 9.3.2.

Problem 9.7 (Hessenberg inverse eigenvalue problem (HIEP) N1). Given a diagonal
matrix Λ = diag(z1, . . . , zm) of distinct nodes zi ∈ C and a vector of weights v ∈ Cm.
Construct a Hessenberg matrix Hm ∈ Cm×m and a unitary matrix Qm ∈ Cm×m such
that

QHmΛQm = Hm and Qme1 = v

‖v‖
. (9.7)

IEP for biORFs

For discrete linear functionals the relation between biORFs and a pair of biorthonormal
bases for Krylov subspaces is provided in Corollary 9.2.

Corollary 9.2 (Recurrence pencil equivalence: biORFs). A pair of sequences of
rational functions {ri}m−1

i=0 and {si}m−1
i=0 in RΞ

m−1 and RΘ
m−1 biorthonormonal with

respect to

Lm{fg} =
m∑
i=1

β̄iαif(zi)g(zi)

is generated by the same recurrence coefficients as the pair of nested biorthonormal
bases {vi}m−1

i=0 and {wi}m−1
i=0 for Km(Λ, v; Ξ) and Km(ΛH , w; Θ), respectively, with

Λ = diag({zi}m−1
i=1 ) and v =

[
α1 . . . αm

]>, w =
[
β1 . . . βm

]>.
Proof. Follows from Lemma 7.2 and Theorem 7.2.

A similar argument as for the IEPs above holds. By Theorem 4.6, we have a tridiagonal
pencil (T, S) and biorthonormal bases V,W ∈ Cm×m for K(Λ, v; Ξ) and K(ΛH , w; Θ)
satisfying

ΛV S = V T
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and simultaneously, for biORFs r :=
[
r0 . . . rm−1

]
,

ΛrS = rT.

And we have

V =


α1r0(z1) α1r1(z1) . . . α1rm−1(z1)
α2r0(z2) α2r1(z2) . . . α2rm−1(z2)

. . .
...

...
αmr0(zm) αmr1(zm) . . . αmrm−1(zm)



W =


β1s0(z̄1) β1s1(z̄1) . . . β1sm−1(z̄1)
β2s0(z̄2) β2s1(z̄2) . . . β2sm−1(z̄2)

. . .
...

...
βms0(z̄m) βms1(z̄m) . . . βmsm−1(z̄m)

 .
Noting that WHV = I implies WH = V −1 and therefore

WHΛV S = T ⇔ V −1ΛV S = T,

that is, a GEVD of the recurrence pencil (T, S). This holds in both directions. Thus
an IEP can be formulated, Problem 9.8 provides an IEP corresponding to biORFs.

Problem 9.8 (Tridiagonal pencil inverse eigenvalue problem (TPIEP) N8). Given a
diagonal matrix Λ = diag(z1, . . . , zm) of distinct nodes zi ∈ C, two vectors containing
weights v, w ∈ Cm, 〈v, w〉 6= 0, and sets of poles Ξ = {ξi}m−1

i=1 and Θ = {θi}m−2
i=1 ,

ξi, θi ∈ C. Construct a tridiagonal pencil (Tm, Sm) ∈ Cm×m, with ti,i+1
si,i+1

= ξi, i =
1, 2, . . . ,m − 1 and ti+1,i

si+1,i
= θ̄i−1, i = 2, 3, . . . ,m − 1 and matrices Vm,Wm ∈ Cm×m

such that
WH
mΛVmSm = Tm and Vme1 = v

ν
, Wme1 = w

η
, (9.8)

where WH
m Vm = I and wHv = νη̄ 6= 0.

Thus a tridiagonal pencil (T, S), where both the subdiagonal and superdiagonal
elements should satisfy some restrictions on their ratios, must be constructed. These
ratio restrictions guarantee that the corresponding rational Krylov subspaces have the
appropriate poles [165]. To obtain the other sequence {si}, biorthonormal to {ri}, an
additional tridiagonal pencil (T̃ , S̃) must be constructed such that V HΛHWS̃ = T̃ .
For biOPs a matrix IEP can be formulated, this is a tridiagonal IEP and is stated in
Problem 9.9.

Problem 9.9 (Tridiagonal inverse eigenvalue problem (TIEP) N4). Given a diagonal
matrix Λ = diag(z1, . . . , zm) of distinct nodes zi ∈ C and two vectors containing weights
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v, w ∈ Cm, 〈v, w〉 6= 0. Construct a tridiagonal matrix Tm ∈ Cm×m and matrices
Vm,Wm ∈ Cm×m such that

WH
mΛVmSm = Tm and Vme1 = v

ν
, Wme1 = w

η
, (9.9)

where WH
m Vm = I and wHv = νη̄ 6= 0.

The tridiagonal IEP has appeared in the literature, for a tridiagonal matrix with
additional structure, called a pseudo-Jacobi matrix. Pseudo-Jacobi matrices arise in
quantum mechanics [9, 48,185,186], the study of nonlinear Toda lattices [96] and for
certain Sturm-Liouville operators [189]. For details on the structure of a pseudo-Jacobi
matrix we refer to [186].

Arnoldi/Lanczos-type procedures

The relationship stated in Corollary 9.1 and Corollary 9.2 between bases for Krylov
spaces and ORFs suggests that Arnoldi and Lanczos-type iterations are suitable
solution procedures. Applying Arnoldi/Lanczos-type procedures for a diagonal matrix
Λ = diag(z1, . . . , zm) and starting vectors v, w ∈ Cm results in (bi)orthonormal bases
V,W ∈ Cm×m and an associated recurrence pencil (H,K). This pencil generates
(bi)ORFs with respect to an inner product or linear functional with nodes {zi}mi=1 and
weights {αi}mi=1 and {βi}mi=1. Section 9.2 elaborates on Krylov subspace methods for
the solution of IEPs. For the IEPs involving long recurrence relations, corresponding
to N1,N5 these procedures are expected to perform well if reorthogonalization is
used [50]. For IEPs with underlying short term recurrence relations, N2,N4 and
N8, Lanczos-type procedures are used. The biorthonormality of the generated bases
deteriorates fast with growing size, reorthogonalization can improve this. Alternatively,
updating procedures work directly with the structure of the recurrence pencils and
avoid the cost of reorthogonalization.

Updating procedures

The relationship between Krylov subspaces and rational functions provides a connection
between sequences of (bi)ORFs and certain structured matrices, the recurrence pencils
for bases of the Krylov spaces. Hence, it is also possible to operate on the recurrence
pencils immediately without the explicit use of Krylov subspaces. The one-to-one
correspondence of a Hessenberg pencil to a rational Krylov subspace follows from the
rational implicit Q theorem [40].
The proposed updating procedures are of this kind, they work immediately on the
structure of the recurrence pencil. Representing a sequence of rational functions by
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their recurrence pencil is discussed in Chapter 7.
Section 9.3 and Section 9.4 propose updating procedures for HPIEPs and TPIEPs,
respectively. Such a procedure starts from, e.g., a Hessenberg pencil (Hm,Km) ∈
Cm×m × Cm×m with eigenvalues {λi}mi=1 and {αi}mi=0 the first components of the
eigenvectors. Reusing this solution, the solution (Hm+1,Km+1) ∈ C(m+1)×(m+1) ×
C(m+1)×(m+1) for {λi}m+1

i=1 and {αi}m+1
i=0 , i.e., after adding a node-weight pair

(λm+1, αm+1) to the HPIEP can be computed. For TPIEPs the idea is the same, only
requiring an additional weight.
The introduction of the new node-weight pair, details follow in Section 9.3 and Section
9.4, will disrupt the structure of the recurrence pencil. Restoring the structure of
this pencil to Hessenberg or tridiagonal form corresponds to computing the solution
(Hm+1,Km+1) to the updated problem.

An updating procedure can be used to solve an IEP of size m > 1 without possessing a
(nontrivial) solution to a smaller IEP. The idea is explained by using a HIEP, Problem
9.7, as an example. For any IEP, the same principle applies.
The updating procedure for HIEPs can be initiated with the trivial 1 × 1 solution
H,Q ∈ C1×1 to the HIEP with Λ := z1 ∈ C and v := 1, i.e., H = z1 and Q = 1. The
associated inner product is 〈f, g〉1 = f(z1)g(z1). For k = 2, 3, . . . ,m, a solution for
〈., .〉k can be obtained by updating the solution for 〈., .〉k−1.
The order in which the node-weight pairs are added can be chosen and will influence
the accuracy of the finite precision solution.

9.1.4 Equivalence between problems

The solutions to Problem 9.1, Problem 9.3 and Problem 9.6 are mathematically
equivalent in the sense that the generated sequences of orthonormal rational functions
are the same. Lemma 9.1 formalizes this equivalence and summarizes the main
connections.

Lemma 9.1. Consider the vector space RΞ
m−1 and a discrete inner product on this

space 〈., .〉m. Let {ri}, {r̂i} and {r̃i} denote the ORFs obtained by solving Problem 9.1,
Problem 9.3 and Problem 9.6, respectively. Then these are essentially the same, i.e.,
ri = r̂i = r̃i for all i, up to multiplication with a constant of modulus 1.

Proof. A sequence of ORFs {ri}ki=0, k < m, with respect to 〈., .〉m is unique. Thus
{ri} solving Problem 9.1 is unique. The Gram matrix M associated with 〈., .〉m and
RΞ
k is Hermitian positive definite, thus M = RHR, and contains in R, more precisely

R̄−1, the coefficients of {r̂i}, which form ORFs for 〈., .〉m By uniqueness of the ORFs
and of the Cholesky decomposition, ri = r̂i for all i.
For the solution {r̃i}, the connection to Krylov subspaces is used, the Gram matrix
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M of ORFs with respect to 〈., .〉m in the monomial basis and the Gram matrix
M = BHmBm associated with the Krylov matrix Bm for Km(Λ, v; Ξ) (Λ and v as in
Corollary 9.1) are the same. The Hessenberg recurrence pencil for a nested orthonormal
basis Qm for Km(Λ, v; Ξ) is unique and essentially equal to the QR decomposition of
Bm, i.e., Bm = QmR̃m. From orthonormality we have I = QHmQm = R̃−Hm BHmBmR̃

−1
m

and thus M = R̃HmR̃m which is a Cholesky decomposition and since this is unique, we
have r̃i = r̂i.

A similar result for biorthonormonal rational functions solving Problem 9.2, Problem
9.4 and Problem 9.8 is formulated in Lemma 9.2. The biORFs solving these three
problems are essentially the same, under the condition that no breakdowns occur, i.e.,
the linear functional is quasi-definite or, equivalently, the Gram matrix is strongly
nonsingular.

Lemma 9.2. Consider the vector spaces RΞ
m−1 and RΘ

m−1 and a discrete quasi-definite
linear functional Lm on the space RΞ

m−1 ·RΘ
m−1. Let {(ri, si)}, {(r̂i, ŝi)} and {(r̃i, s̃i)}

denote the pairs of biORFs obtained by solving Problem 9.2, Problem 9.4 and Problem
9.8, respectively. Then these are essentially the same, i.e., ri = r̂i = r̃i and si = ŝi = s̃i
for all i, up to normalization.

Proof. The proof is analogous to the one in Lemma 9.1, thus we only provide the
necessary components. A sequence of biORFs exists and is unique if the associated
Gram matrix (appearing in the determinantal expression) is strongly nonsingular
[10, 31]. The LDR factorization of a matrix is unique [105]. The relation between the
LDR factorization of the Gram matrix and the recurrence pencil for biorthonormal
vectors for Krylov subspaces is clear from the exposition in Chapter 4.

9.2 Krylov based procedures

The solution of the structured IEPs in Section 9.1.3 can be obtained by running an
Arnoldi or Lanczos-type iteration for Krylov subspaces generated by suitably chosen
matrix and starting vector(s). Given a discrete inner product or linear functional,
Corollary 9.1 or Corollary 9.2, respectively, specify how to choose the matrix and
starting vectors. The usual Arnoldi and Lanczos iteration solve Problem 9.7 and
Problem 9.9, respectively. The discussion of these classical cases is limited to an
overview with some references to the literature. Problem 9.6 and Problem 9.8 can be
solved with the rational Arnoldi iteration, see Algorithm 4, and the rational Lanczos
iteration introduced in Chapter 8. The formulation of the IEPs in terms of a pencil
is new and is therefore discussed in more detail. Section 9.2.1 is dedicated to IEPs
related to inner products and Section 9.2.2 to IEPs related to linear functionals.
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9.2.1 Orthogonal

Inverse eigenvalue problems related to polynomials and rational functions orthogonal
with respect to an inner product are the classes N1,N2,N3,N5,N6 and N7.

Polynomials

A Hessenberg IEP, corresponding to N1, can be solved by the Arnoldi iteration,
Algorithm 1. The resulting Hessenberg recurrence matrix generates polynomials
orthogonal with respect to some inner product with nodes {zi} anywhere in the
complex plane, zi ∈ C.
If all the nodes are located on the real line zi ∈ R, then ΛH = Λ and a Jacobi IEP,
N2, can be formulated. The Hermitian Lanczos iteration [45] solves the Jacobi IEP
and leads to OPs on the real line. If all nodes lie on the unit circle zi ∈ T, then
ΛH = Λ−1 and a unitary Hessenberg IEP, N3, is appropriate. The recommended
solution procedure uses the Schur form (core factorization) of the unitary Hessenberg
[142]. The resulting OPs are Szegő polynomials [157].

Rational functions

The Hessenberg pencil formulation of an IEP, N5, corresponding to ORFs is new
and was published in [167]. In [128,161] the IEPs formulated for ORFs use a single
recurrence matrix, N6 and N7.
The rational Arnoldi iteration, given in Algorithm 4, computes a nested orthonormal
basis for Kk(Λ, v; Ξ) and corresponding Hessenberg pencil. Theorem 9.1 provides
details on how the rational Arnoldi procedure can be used to solve Problem 9.6.

Theorem 9.1. Let the unitary matrix Qm ∈ Cm×m and Hessenberg matrices
Hm,Km ∈ Cm×m be obtained by applying the rational Arnoldi iteration for Km(Λ, v; Ξ),
with Λ, v and Ξ as in Problem 9.6. Then these matrices solve Problem 9.6.

Proof. The matrix Qm is unitary since Km(Λ, v; Ξ) = Cm by the conditions on Λ
and v. Thus Q−1

m ΛQmKm = Hm, i.e., σ(Hm,Km) = σ(Λ). The remainder of the
proof follows immediately from the properties of the recurrence pencil obtained by the
rational Arnoldi iteration.

The obtained pencil (Hm,Km) is the Hessenberg recurrence pencil representing the
sequence of ORFs in RΞ for 〈., .〉m. For a state of the art implementation of the
rational Arnoldi iteration we refer to rktoolbox [17].
If all nodes are on the real line, a tridiagonal pencil IEP can be formulated for ORFs
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and the Hermitian Lanczos iteration [98, 133] is suited to solve this problem. More
details follow in Section 9.2.2.

9.2.2 Biorthogonal

IEPs related to polynomials or rational functions biorthogonal with respect to a linear
functional, N4,N8 and N9, must be solved with biorthogonal procedures. Hence,
Lanczos-type iterations are appropriate. In finite precision Lanczos-type iterations
suffer from loss of biorthogonality of the generated bases due to the underlying short
recurrence relations. Thus, some form of reorthogonalization might be necessary to
obtain satisfactory results.

Polynomials

For biorthogonal polynomials a tridiagonal IEP, N4, can be formulated and it can be
solved by the Lanczos iteration, given in Algorithm 2. For nodes zi on the real line
and positive real weights αi > 0, the linear functional is an inner product and the
tridiagonal IEP reduces to the Jacobi IEP. Just as the Lanczos iteration reduces to
the Hermitian Lanczos iteration for AH = A and v = w.

Rational functions

To solve the TPIEP, N8, the rational Lanczos iteration described in Appendix B.1
can be used. We made our Matlab code implementing the rational Lanczos iteration,
proposed in our paper [165], available online [162]. Theorem 9.2 formalizes the
connection between the solution of the rational Lanczos iteration and the solution to
the TPIEP.

Theorem 9.2. Let the matrices Vm,Wm ∈ Cm×m be the bases and Tm, Sm ∈ Cm×m
the matrices of recurrences coefficients obtained by applying the rational Lanczos
iteration for Km(Λ, v; Ξ) and Km(ΛH , w; Θ), with Λ, v, w and Ξ,Θ as in Problem 9.8.
Then these matrices solve Problem 9.8, under the assumption that the iteration does
not break down.

Proof. Since Km(Λ, v; Ξ) = Km(ΛH , w; Θ) = Cm, under the no-breakdown assumption,
and WH

m Vm = I, we have Wm = V −Hm . Thus V −1
m ΛVmSm = Tm, i.e., σ(Tm, Sm) =

σ(Λ). The remainder of the proof follows immediately from the rational Lanczos
iteration. With appropriate normalization V e1 = v

ν and We1 = w
η , with νη̄ =

wHv.
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If all nodes {zi} defining the linear functional Lm are on the real line, zi ∈ R for all i,
and the associated weights αi > 0, then Λ = diag({zi}) is a Hermitian matrix and the
linear functional is in fact an inner product. By Theorem 4.8 there exists a tridiagonal
pencil which generates a sequences of ORFs. Fasino and Gemignani [65] also noted the
connection between a real semi-separable plus diagonal IEP and a tridiagonal pencil
IEP.
The Hessenberg pencil computed with the rational Arnoldi iteration, however, does
not reduce to a tridiagonal pencil when all zi ∈ R. So in order to exploit the short
recurrence relation, the biorthogonal method, i.e., the rational Lanczos iteration,
is a more natural starting point. The rational Lanczos iteration will generate a
biorthonormal pair of bases that reduces to a single orthonormal basis. This is, of
course, mathematically equivalent to using the Hermitian rational Lanczos iteration.
For numerical implementation it is advised to develop a method specifically for the
Hermitian case.

9.3 Updating procedures - inner product

The connection between ORFs and certain structured pencils, a Hessenberg pencil
with a particular ratio satisfied by its subdiagonal elements, can be exploited directly.
Updating procedures do not explicitly use Krylov subspaces, they operate directly on
the structure of the pencil. For IEPs with orthonormal bases the updating procedure
uses unitary similarity transformations with plane rotations. Plane rotations are
essentially 2× 2 unitary matrices Pi with parameters a, b ∈ C, |a|2 + |b|2 = 1,

Pi :=


Ii−1

ā −b̄
Im−i

b a

 . (9.10)

The class of plane rotations Pi is denoted by Pi.
A node-weight pair must be introduced, which is performed by embedding of the
available solution and by multiplication with a plane rotation. This will perturb the
recurrence pencil, it will no longer be a Hessenberg matrix (or Hessenberg pencil).
Then the Hessenberg (pencil) structure is restored using a sequence of plane rotations.
The origin of this idea can be traced back to Rutishauser [145]. Rutishauser used a
similar procedure with plane rotations to express the product of two J-fractions as a J-
fraction, this is a continued fraction related to Jacobi matrices. In the same conference
proceedings Wilkinson [182] published a paper on the error analysis of operations with
plane rotations. Gragg and Harrod were the first to apply Rutishauser’s procedure to
solve a Jacobi IEP [92]. Their procedure constructs the Jacobi matrix in a numerically
stable manner, whereas the Lanczos iteration suffers from instability. Following the
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success of this method, the same idea has been applied to solve many other IEPs, see
e.g., [27, 45,161].
An updating procedure for the Hessenberg IEP is discussed in Section 9.3.1. In Section
9.3.2 a novel, parallelizable variant of this updating procedure is proposed. Section
9.3.3 proposes a novel, numerically stable updating procedure for Hessenberg pencil
IEPs. This novel procedure is published in [167].

9.3.1 Hessenberg IEP

Suppose a solution to Problem 9.7 of size m is available, this is a proper Hessenberg
matrix Hm ∈ Cm×m and a unitary matrix Qm ∈ Cm×m satisfying

Hm = QHmΛQm, Λ = diag({zi}mi=1), Qme1 = v/‖v‖.

Given a new weight αm+1 6= 0 and node zm+1 /∈ {zi}mi=1, the updating problem
consists of computing the Hessenberg matrix Hm+1 ∈ C(m+1)×(m+1) and unitary
matrix Qm+1 ∈ C(m+1)×(m+1) satisfying

Hm+1 = QHm+1

[
Λ

zm+1

]
︸ ︷︷ ︸

=:Λ̃

Qm+1, Qm+1e1 = ṽ/‖ṽ‖, with ṽ =
[
v αm+1

]>
.

The first step in the updating procedure is to embed the available solution of sizem into
matrices of size m+ 1. The embedded matrices are denoted by Ĥ, Q̂ ∈ C(m+1)×(m+1):

Ĥ =
[
Hm

zm+1

]
, Q̂ =

[
Qm

1

]
,

Ĥ is a Hessenberg matrix, Q̂HQ̂ = I and Q̂HΛ̃Q̂ = Ĥ. These matrices form the
solution to a HIEP, but not the correct one, since Q̂e1 =

[
v 0

]>
/‖v‖ 6= ṽ/‖ṽ‖. So,

the first column of Q̂ must be altered, which corresponds to introducing the weight
αm+1 into the associated inner product.
An important note is that the matrices Qm and Q̂ need not be known at any point
in the procedure, only the Hessenberg matrix and the weights must be saved. In
the following exposition, Qm and Q̂ are used solely for clarity. The two steps of
the updating procedure are now discussed in detail and afterwards an algorithm is
proposed, implementing this procedure.
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Introduce weight αm+1

The first column of the unitary matrix Qm+1 must correspond to the normalized weight
vector ṽ/‖ṽ‖ , i.e., Qm+1e1 = ṽ/‖ṽ‖. The plane rotation P1 ∈ P1 ⊂ C(m+1)×(m+1)

enforces this condition. The value for a and b follow from |a|2 + |b|2 = 1 and

Q̂PH1 e1 =


× . . . × 0

v
‖v‖

...
...

...
× . . . × 0

0 0 . . . 0 1


 a b̄

Im−1
−b ā

 e1 =
[ āv
‖v‖
−b

]
= ṽ/‖ṽ‖.

The values are 
a =
√
‖v‖2−‖v‖2|αm+1|2+|αm+1|2√

‖v‖2+|αm+1|2

b = − αm+1‖v‖√
‖v‖2+|αm+1|2

(9.11)

and if ‖v‖2 = 1, then the expressions simplify toa = 1√
1+|αm+1|2

b = − vm+1√
1+|αm+1|2

.

This step of the updating procedure is stable since multiplication with plane rotations
is numerically stable [183, p.133]. The eigenvalue decomposition changes since the
eigenvectors are altered by P1,

Q̂HΛ̃Q̂ = Ĥ → P1Q̂
HΛ̃Q̂PH1 = P1ĤP

H
1 .

The new eigenvectors are orthonormal, which follows from (Q̂PH1 )H(Q̂PH1 ) = P1P
H
1 =

I. And the eigenvalues are unaltered since a similarity transformation is performed.
However, the matrix Ḣ := P1ĤP

H
1 is no longer a Hessenberg matrix. Figure 9.1 shows

the structure of Ḣ, which has Hessenberg structure except for the last row.

�

�

× × × × ×
× × × × ×
× × × ×
× × ×
× ×

×





�

�

=

× × × × × ×
× × × × × ×
× × × ×
× × ×
× ×

× × × × × ×




Figure 9.1: Structure of P1ĤP

H
1 = Ḣ.
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Restore structure

The matrix Ḣ =: Ḣ [1] only differs from a Hessenberg matrix by its last row. Using
unitary similarity transformations with plane rotations the elements in the last row
can be eliminated one by one, thereby restoring the Hessenberg structure. These
transformations should preserve the first column of Q̂PH1 . Without loss of generality
we assume that the k − 1 first elements in the last row have been eliminated by
the product of plane rotations

∏2
i=k Pi = PkPk−1 . . . P2. At step k the matrix is

Ḣ [k] :=
(∏1

i=k Pi

)
Ḣ
(∏1

i=k Pi

)H
, the superscript [k] reveals the step in the structure

restoring process. Next ḣ[k]
m+1,k must be eliminated using Pk+1 ∈ Pk+1 with parameters

ak+1 and bk+1. The element ḣ[k]
m+1,k is eliminated by a sum with the element ḣ[k]

k+1,k

which has not been altered by any of the previous transformations, thus ḣ[k]
k+1,k = hk+1,k.

The parameters ak+1, bk+1 are determined such that[
āk+1 −b̄k+1
bk+1 ak+1

] [
hk+1,k

ḣ
[k]
m+1,k

]
=
[√
|hi+1,i|2 + |ḣ[k]

m+1,k|2
0

]
,

which leads to 
ak+1 =

√
|hk+1,k|2

|hk+1,k|2+|ḣ[k]
m+1,k|2

bk+1 = −ak+1ḣ
[k]
m+1,k

hk+1,k

.

These parameters always exist becauseHm is a proper Hessenberg matrix, i.e., hk+1,k 6=
0 for k = 1, . . . ,m− 1.

Figure 9.2 shows, for m = 6, the structure of Ḣ [k] throughout the updating procedure.
As illustrated in this figure, the Hessenberg structure is recovered after m−2 similarity
transformations with plane rotations. Once the Hessenberg structure is restored, the
resulting matrix Ḣ [m] ∈ C(m+1)×(m+1) is the solution to the updated IEP.
Similarity transformations with plane rotations are numerically stable [183, p.140].
Hence, restoring the Hessenberg structure is performed in a numerically stable manner.
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Ḣ [5]

× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×
× ×
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Figure 9.2: Updating strategy restoring Hessenberg structure.

Algorithm

By combining the above steps a numerically stable algorithm to compute the solution
of an updated HIEP is obtained. For simplicity we restrict to the case where zm+1
is not in the spectrum of the available solution Hm, zm+1 /∈ σ(Hm). Algorithm 7
provides the implementation of the updating procedure for zm+1 /∈ σ(Hm). In this
algorithm the notation P (x, y, i) is used, which is a short notation for Pi ∈ Pi with
active parameters a = x and b = y. Note that in Step 9 of Algorithm 7 the eliminated
element ḣm+1,k is set explicitly to zero.
If the nodes zi are all on the real line, then the updating procedure constructs a Jacobi
matrix, this follows from Λ = ΛH and QHQ = I. Then Algorithm 7 corresponds
(mathematically) to the procedure proposed by Gragg and Harrod [92]. Figure 9.3
shows the updating procedure for a Jacobi matrix, i.e., zi ∈ R. If zm+1 does coincide
with an eigenvalue of Hm, zm+1 ∈ σ(Hm), say zm+1 = zk, then the size of the problem
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Algorithm 7 Updating procedure HIEP
1: Input: Proper Hessenberg matrix Hm ∈ Cm×m, node zm+1 ∈ C, zm+1 /∈ σ(Hm)

and weight αm+1 > 0.
2: Output: Proper Hessenberg matrixHm+1 ∈ C(m+1)×(m+1), such that σ(Hm+1) =
σ(Hm) ∪ zm+1.

3: procedure UpdateHIEP(Hm, zm+1, αm+1)

4: P := P

(
1√

1+|vm+1|2
, αm+1√

1+|αm+1|2
, 1
)

5: Ḣ := PH
[
Hm

zm+1

]
P

6: for k = 1, . . . ,m− 1 do

7: P := P

(√
|hk+1,k|2

|hk+1,k|2+|ḣ[k]
m+1,k|2

,−ak+1ḣ
[k]
m+1,k

hk+1,k
, k + 1

)
8: Ḣ := PHḢP
9: Set ḣm+1,k := 0

10: end for
11: Hm+1 := Ḣ
12: end procedure

remains the same, but the weight wk in the inner product 〈., .〉m associated with zk
will be altered by the updating procedure. With minor modifications the updating
procedure can then be used as a downdating procedure [60], i.e., to remove a node-
weight pair from an inner product. But this does not lead to a numerically stable
downdating procedure so this idea will not be pursued further. Downdating procedures
are discussed in Section 9.6.
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Figure 9.3: Updating strategy restoring tridiagonal (Jacobi) structure.

9.3.2 Hessenberg IEP - Recursive updating

A new updating procedure is proposed which allows for a parallel implementation, it
will be called recursive updating procedure (RUP). The idea is as follows. Instead of
adding one node zm+1 to an available solution Hm ∈ Cm×m and updating to obtain
Hm+1 ∈ C(m+1)×(m+1), RUP starts from two available solutions Hl ∈ Cl×l, H̆k ∈ Ck×k
and merges them to obtain the solution H̃k+l ∈ C(k+l)×(k+l).
More formally, consider Hl, Ql ∈ Cl×l, the solution to a HIEP with

Λ = diag({z}li=1), Q̂le1 = v

‖v‖2
,

where zi 6= zj if i 6= j and e>i v 6= 0 for all i. Consider also, the solution H̆k, Q̆l ∈ Ck×k

Λ̆ = diag({z̆ki=1}), Q̆ke1 = v̆

‖v̆‖2
,
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with z̆i 6= z̆j if i 6= j and e>i v̆ 6= 0 for all i.
The updated IEP of size m = k + l consists of

Λ̃ :=
[
Λ

Λ̆

]
, ṽ :=

[
v
v̆

]
,

the corresponding solution is denoted by H̃m, Q̃m ∈ Cm×m. Assume, for simplicity
that Λ̃ has distinct elements.
The matrices Ql ∈ Cl×l and Q̆k ∈ Ck×k are used in the following discussion, but they
are not required, only the norms of the weight vectors v, v̆ are needed. The idea is
the same as above: embed the matrices, introduce the correct weights and restore
Hessenberg structure. The embedded matrices are

Ĥ :=
[
Hl

H̆k

]
, Q̂ :=

[
Ql

Q̆k

]
,

with Ĥ a Hessenberg matrix, Q̂HQ̂ = I and Q̂HΛ̃Q̂ = Ĥ. Clearly Q̂e1 6= ṽ
‖ṽ‖2 , which

can be enforced by a unitary transformation.

Introduce weights

The weights appearing in the first column of Q̆k must appear in the first column of
the solution Q̃m. This is accomplished by P̆1 := P1 ⊕ Ik−1, P1 ∈ P1 ⊂ C(l+1)×(l+1),

P̆1 =


ā −b̄

Il−1
b a

Ik−1

 , with

a = ‖v‖2√
‖v‖2+‖v̆‖2

b = − ‖v̆‖2√
‖v‖2+‖v̆‖2

.

The matrix Q̇ := Q̂P̆H1 satisfies Q̇e1 = ṽ
‖ṽ‖2 . The eigenvalue decomposition changes

Q̂HΛ̃Q̂ = Ĥ → P̆1Q̂
HΛ̃Q̂P̆H1 = P̆1ĤP̆

H
1 .

Set Ḣ := P̆1ĤP̆
H
1 , this matrix is no longer a Hessenberg matrix, its structure is shown

in Figure 9.4. Note that in the first column of Ḣ there are two elements that must be
annihilated.

Restore structure

The matrix Ḣ =: Ḣ [1] can be brought to Hessenberg form by unitary similarity
transformations. As before, plane rotations can be used or Householder reflectors
[105,117].
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Figure 9.4: Structure of Ḣ = P̆1ĤP̆

H
1 .

Definition 9.1 ((Complex) Householder reflectors [117, Appendix B.1]). Consider
the vector x ∈ Cn and α = ±‖x‖2eı arg(x1) ∈ C, with x1 = xe1. The Householder
reflector is the unitary, Hermitian matrix

F = I − 2yy
H

yHy
, with y = x+ αe1

transforming x into a multiple of e1, i.e., Fx = −αe1.

An algorithm implementing this is provided in Algorithm 8.

Algorithm 8 Compute Householder reflector
1: Input: x ∈ Cn.
2: Output: F ∈ Cn×n such that Fx = −αe1, with α = ‖x‖2eı arg(xe1) ∈ C.
3: procedure HouseHolderReflector(x)
4: α := ‖x‖2eı arg(xe1)

5: y := x+ αe1

6: F := I − 2yy
H

yHy
7: end procedure

If there are few nonzero elements in each column to be eliminated, then plane rotations
are more efficient than Householder reflectors. The structure restoring process here
will lead to an increase in the amount of nonzero elements per column. A preview of
the structure restoring process is provided in Figure 9.5.

Hence, Householder reflectors become a viable alternative to plane rotations [85]. For
ease of notation, the procedure for the Householder reflectors will be described. In
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Figure 9.5: Recursive updating strategy for HIEP

the structure restoring process a Householder reflector F is constructed such that
Fx = α‖x‖2e1, with |α| = 1. The vector x is constructed from the subdiagonal
element, used for elimination, and all nonzero elements to be eliminated. Throughout
the updating, two cases can be distinguished:

• For column i, with 1 ≤ i < l, n := min{k, i+ 1} elements must be annihilated

in this column. The relevant elements are grouped in the vector x :=



hi+1,i

ḣ
[i]
l+1,i
ḣ

[i]
l+2,i
...

ḣ
[i]
l+n,i

.
Note that the first element of x is an element of the original matrix Hl, and
therefore nonzero.

• For column i, with i ≥ l, n := min{k, l + i} and n − 1 elements must be
annihilated in this column. The relevant elements are grouped in the vector
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x :=


ḣ

[i]
i+1,i
ḣ

[i]
i+2,i
...

ḣ
[i]
i+n,i

.

For x ∈ Cn a Householder reflector Ḟ ∈ Cn×n is constructed. Then Ḟ is correctly
embedded in a matrix F ∈ Cm×m, such that FH only influences the rows used to
construct x. Details are provided in the algorithm.

Algorithm

Algorithm 9 provides the recursive updating procedure for HIEPs. The Householder
reflectors can be replaced by any sequence of plane transformations that reduces x to
αe1. Details for this approach are omitted, our code implementing Algorithm 9 can
be found online [163]. Figure 9.6 shows the structure of the matrix throughout the
updating procedure, on this figure k > l, whereas Figure 9.5 shows the case l > k.
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Algorithm 9 Recursive updating procedure

1: Input: Proper, simple Hessenberg matrices Hl ∈ Cl×l, H̆k ∈ Ck×k, with σ(Hl) ∩
σ(H̆k) = ∅ and η, ν the normalization of the weight vectors, i.e., η = ‖v‖2 and
ν = ‖v̆‖2.

2: Output: H̃ ∈ C(k+l)×(k+l), with σ(H) = σ(Hl) ∪ σ(H̆k).
3: procedure RUP(Hl, H̆k, η, ν)

4: H :=
[
Hl

H̆k

]
5: Ċ := CoreTransformation(η, ν)
6: C := I, C([1, l + 1] , [1, l + 1]) := Ċ
7: H := CHCH . Introduce weights
8: for i = 1, 2, . . . , l − 1 do . Columns 1 through l − 1
9: n := min{k, i+ 1}

10: x :=
[
hi+1,i hl+1,i hl+2,i hl+n,i

]>
11: Ḟ := HouseHolderReflector(x)
12: F := I, F ([i+ 1, l + 1 : l : n] , i + 1) := Ḟ ([1 : n+ 1] , 1),

F ([i+ 1, l + 1 : l + n] , [l + 1 : l + n]) := Ḟ ([1 : n+ 1] , [2 : n+ 1])
13: H = FHFH

14: H([l + 1, l + n] , i) = 0
15: end for
16: n := l + k
17: for i = l, l + 1, . . . , l + k − 2 do . Columns l through k + l − 2
18: if l + i+ 1 ≤ l + k then
19: n := l + i+ 1
20: end if
21: x :=

[
hi+1,i hi+2,i . . . hn,i

]>
22: Ḟ := HouseHolderReflector(x)
23: F := I, F ([i+ 1, n] , [i+ 1, n]) := Ḟ
24: H = FHFH

25: H([i+ 2 : n] , i) = 0
26: end for
27: H̃ := H
28: end procedure
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Figure 9.6: Hessenberg recursive updating, trailing submatrix larger than leading
submatrix with Householder
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9.3.3 Hessenberg pencil IEP

An updating procedure for a HPIEP, formulated in Problem 9.6, is similar in spirit
to the updating discussed in Section 9.3.1, with the essential difference that a pencil
must be manipulated. This especially influences the step which restores the structure
of the recurrence pencil.
The procedure starts from a unitary matrix Qm ∈ Cm×m and a proper Hessenberg
pencil (Hm,Km) ∈ Cm×m ×Cm×m, which form the solution to a HPIEP. That is, the
following equalities are satisfied

QHmΛQmKm = Hm, Qme1 = v

‖v‖
,

hi+1,i

ki+1,i
= ξi, i = 1, . . . ,m− 1. (9.12)

From this available solution it constructs the Hessenberg pencil (Hm+1,Km+1) ∈
C(m+1)×(m+1) × C(m+1)×(m+1) and orthonormal basis Qm+1 ∈ C(m+1)×(m+1) which
solve the updated HPIEP. The HPIEP is updated with the node-weight pair zm+1, αm+1
and pole ξm. That is, the updated solution must satisfy

QHm+1

[
Λ

zm+1

]
︸ ︷︷ ︸

=:Λ̃

Qm+1Km+1 = Hm+1,
hi+1,i

ki+1,i
= ξi, i = 1, . . . ,m− 1,m,

Qm+1e1 = ṽ

‖ṽ‖
, with ṽ :=

[
v αm+1

]>
.

First, them-dimensional solution is embedded in matrices of sizem+1, while preserving
some key properties. The embedded matrices Q̂, Ĥ, K̂ ∈ C(m+1)×(m+1) should satisfy
Q̂HQ̂ = I, Q̂HΛ̃Q̂K̂ = Ĥ, and Ĥ, K̂ must be Hessenberg matrices:

Q̂ :=
[
Q

1

]
, Ĥ :=

[
H

ĥ

]
, K̂ :=

[
K

k̂

]
, with zm+1k̂ = ĥ. (9.13)

Since the procedure proposed in the sequel is new, a formal statement in Theorem 9.3
describes the form of the solution. The update requires only 2m plane rotations to
update an available solution of size m to size m+ 1.

Theorem 9.3. Let Qm ∈ Cm×m, (Hm,Km) ∈ Cm×m × Cm×m be the solution to
Problem 9.6 of size m. And let Q̂, Ĥ and K̂ denote the embedded matrices from (9.13).
Then there exist Pi, Ṗi ∈ Pi, i = 1, . . . ,m, such that

Hm+1 =
1∏

l=m
PlĤ

m∏
k=1

Ṗk, Km+1 =
1∏

l=m
PlK̂

m∏
k=1

Ṗk, Q̃ = Qm+1

m∏
l=1

PHl

solve a HPIEP of size m+ 1, which is obtained by adding a node zm+1, weight αm+1
and pole ξm to the original IEP.
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The remainder of the section is dedicated to proving results that can be combined to
obtain this theorem. The proofs of these results are constructive in the sense that
they describe how the plane rotations in Theorem 9.3 must be computed. Remarks on
stability are included outside of the proofs, which clarify how to compute the plane
rotations in the most numerically stable way. Afterwards these results are combined
to propose a numerically stable algorithm that implements the updating procedure.

Introducing weight αm+1

The introduction of the weight in the first column of Q̂ is the same as described for the
HIEP updating. Postmultiplication with a plane rotation PH1 ∈ P1 ⊂ C(m+1)×(m+1)

with parameters (9.11) has the desired effect. The generalized eigenvalue decomposition
changes under this change of eigenvector basis,

Q̂HΛ̃Q̂K̂ = Ĥ → P1Q̂
HΛ̃Q̂PH1 P1K̂ = P1Ĥ.

The structure of the pencil is perturbed in the last row of both matrices:

P1Ĥ =



× × . . . × × ×
× × . . . × × 0
× . . . × × 0

. . . ...
...

...
× × 0

× × . . . × × ×


, P1K̂ =



× × . . . × × ×
× × . . . × × 0
× . . . × × 0

. . . ...
...

...
× × 0

× × . . . × × ×


.

Restore Hessenberg pencil structure

The following step is to restore the Hessenberg pencil structure using unitary similarity
transforms on the pencil (P1Ĥ, P1K̂) = (Ḣ [1], K̇ [1]). The elements in the last row of
both matrices appearing in the pencil must be eliminated simultaneously. Lemma 9.3
provides the details and stresses an important property, namely, the poles present in
the pencil are preserved under transformations that restore the structure. The poles
must be preserved since these characterize the connection between the pencil and
ORFs with these poles.

Lemma 9.3. Consider the embedded pencil (Ĥ, K̂) ∈ C(m+1)×(m+1) × C(m+1)×(m+1)

(9.13) and P1 with parameters (9.11). There exist Pl ∈ Pl, l = 2, 3, . . . ,m and
Ṗk ∈ Pk, k = 1, 2, . . . ,m− 1 such that for X :=

∏1
l=m Pl and Ẋ :=

∏m−1
j=1 Ṗj,

Ḣ [m] := XĤẊ and K̇ [m] := XK̂Ẋ

are Hessenberg matrices with ḣi+1,i
k̇i+1,i

= ĥi+1,i

k̂i+1,i
, i = 1, . . . ,m− 1.
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Proof. Starting from (Ḣ [1], K̇ [1]), the elements of the last row are annihilated using
plane rotations. Assume, without loss of generality, that the Hessenberg structure is
restored up to column i.
Set X [i+1] :=

∏1
l=i+1 Pl and Ẋ [i] :=

∏1
j=i Pj , then the first i columns of Ḣ [i+1] :=

X [i+1]ĤẊ [i] and K̇ [i+1] := X [i+1]K̂Ẋ [i] have Hessenberg structure. Let γ := ḣ
[i+1]
m+1,i+1

, α := k̇
[i+1]
m+1,i+1, δ := ḣ

[i+1]
i+2,i+1, β := k̇

[i+1]
i+2,i+1, η := ḣ

[i+1]
m+1,m+1 and ε := k̇

[i+1]
m+1,m+1, then

Ḣ [i+1] =:

H̃(i+1)×i × MH ×
δe1 BH 0
γ ×> η

 , K̇ [i+1] =:

K̃(i+1)×i × MK ×
βe1 BK 0
α ×> ε

 .
(9.14)

In the matrices from (9.14):

• H̃(i+1)×i, K̃(i+1)×i are Hessenberg matrices of size (i+ 1)× i. These will not
be altered in subsequent steps of the structure restoring process.

• MH ,MK ∈ C(i+1)×(m−i−1) are (generically) full matrices.

• BH , BK ∈ C(m−i−1)×(m−i−1) are Hessenberg matrices.

• the zero vectors, denoted by 0, and vectors containing generic nonzero elements,
denoted by ×, are assumed to be of appropriate size.

The elements α, γ must be eliminated, this is achieved in two steps. Since plane
rotations are used, the relevant elements can be isolated in an equivalent 2×2 problem,
i.e. find parameters a, b and c, d appearing in Pi+2 and Ṗi+1, respectively, such that

P bi+2H
bṖ bi+1 :=

[
ā −b̄
b a

][
δ 0
γ η

][
c̄ −d̄
d c

]
=
[
h ×
0 ×

]
,

P bi+2K
bṖ bi+1 :=

[
ā −b̄
b a

][
β 0
α ε

][
c̄ −d̄
d c

]
=
[
k ×
0 ×

]

with h
k = δ

β = ξi+1 and the superscript b, for block. First Ṗ bi+1 is constructed such
that MṖ bi+1e1 =

[
0 0

]> with

M := δKb − βHb =
[

0 0
× ×

]
.

This results in rank
([
HbṖ bi+1e1 KbṖ bi+1e1

])
= 1, i.e., the first column of HbṖ bi+1 and

the first column KbṖ bi+1 are colinear (also called parallel). Second, P bi+2 is chosen to
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make HbṖ bi+1 (or KbṖ bi+1) upper triangular, i.e., P bi+2H
bṖ bi+1e1 =

[
k 0

]>. Thanks
to the colinearity, the same plane rotation P bi+2 results in P bi+2H

bṖ bi+1 =
[
h 0

]>. For
some nonzero constant u, h = uδ and k = uβ and therefore the ratio of subdiagonal
elements h

k = uδ
uβ = ξi+1 is preserved. By a simple rank argument on the 2×2 matrices

involved it can be shown that the elements e>2 P bi+2H
bṖ bi+1e2 and e>2 P bi+2K

bṖ bi+1e2 are
nonzero. Hence, this process can be repeated until i = m− 2. If δ = 0 (or β = 0, never
both), then rank(Hb) = 1 (or rank(Kb) = 1) and the rank argument no longer holds,
however straightforward computation shows that, in this case, e>2 P bi+2H

bṖ bi+1e1 6= 0
(or e>2 P bi+2K

bṖ bi+1e1 6= 0).

Note that Ṗl, l = 1, 2, . . . ,m− 1 can be replaced by nonsingular matrices in the above
proof. However unitary matrices are preferred for numerical computations.
Lemma 9.3 guarantees that a Hessenberg pencil can be obtained via unitary similarity
transformations. Figure 9.7 shows the structures occurring in the updating procedure
for one of the matrices in the pencil, for the other matrix the occurring structures are
the same.
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× ×
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Figure 9.7: Updating strategy restoring Hessenberg pencil structure.

Thus we have a Hessenberg pencil (Ḣ, K̇) with σ(Ḣ, K̇) = {zi}m+1
i=1 . However the

ratio of their last subdiagonal elements will not necessarily be equal to the new pole
ξm.
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Introduce new pole ξm

The pole ξm will be introduced by postmultiplying Ḣ [m] and K̇ [m] with a plane rotation
in Pm. Postmultiplication of Ḣ [m] and K̇ [m] with a nonsingular matrix preserves the
eigenvalues of the pencil (Ḣ [m], K̇)[m]. Lemma 9.4 provides a formal statement.

Lemma 9.4. Consider ξm ∈ C and the matrices from Lemma 9.3,

Ḣ [m] =
1∏

l=m
PlĤ

m−1∏
k=1

Ṗk, K̇ [m] =
1∏

l=m
PlK̂

m−1∏
k=1

Ṗk. (9.15)

Then Ṗm ∈ Pm, with parameters c, d, exists such that, for H̃ := Ḣ [m]Ṗm and K̃ :=
K̇ [m]Ṗm, the ratio h̃m+1,m

k̃m+1,m
= ξm.

Proof. The matrix Ṗm =

Im−1
c̄ −d̄
d c

 acts only on the last two columns of Ḣ [m]

and K̇ [m] and its parameters c, d can be determined from the equationscc̄+ dd̄ = 1
c̄ḣ

[m]
m+1,m+dḣ[m]

m+1,m+1

c̄k̇
[m]
m+1,m+dk̇[m]

m+1,m+1
= ξ ∈ C.

For ξ =∞, the second expression becomes c̄k̇[m]
m+1,m + dk̇

[m]
m+1,m+1 = 0.

Introducing the pole is performed by multiplication with a plane rotation, which is
numerically stable [183, p.133].

Algorithm

A numerically stable algorithm can be developed which computes (H̃, K̃) (and
optionally Q̃) appearing in Theorem 9.3. Introducing the new weight and new pole is
performed by plane rotations and is numerically stable. For the structure restoring
process, a pencil is manipulated and in the algorithm the numerically computed
annihilated elements will be set explicitly to zero. We must verify whether this is
numerically stable, i.e., verify that the annihilated element is small enough so that
setting it to zero does not compromise numerical stability.
The error analysis for this has, in fact, been performed in the context of computing
deflating subspaces [38,171]. These results are applicable here, we repeat the criterion
leading to the most numerically stable procedure. this criterion dictates whether to use
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Ḣ [i]Ṗi or K̇ [i]Ṗi to compute Pi+1 in the proof of Lemma 9.3. The most numerically
stable implementation [38] is obtained by, using the notation of the proof of Lemma 9.3,

compute Pi+1 from
{∏1

l=i PlĤ
∏i
k=1 Ṗk, if ηε <

δ
α∏1

l=i PlK̂
∏i
k=1 Ṗk, else

. (9.16)

Algorithm 10 provides all the details, criterion (9.16) appears on Step 10 of this
algorithm.

Algorithm 10 Updating procedure HPIEP
1: Input: Proper Hessenberg pencil (Hm,Km) ∈ Cm×m × Cm×m, node zm+1 ∈ C,
zm+1 /∈ σ(Hm) and weight αm+1 6= 0.

2: Output: Proper Hessenberg pencil (Hm+1,Km+1) ∈ C(m+1)×(m+1) ×
C(m+1)×(m+1), such that σ(Hm+1) = σ(Hm) ∪ zm+1.

3: Assumption: ‖v‖ = 1.
4: procedure UpdateHPIEP(Hm,Km, zm+1, αm+1, ξm)

5: P := P

(
1√

1+|αm+1|2
,− αm+1√

1+|αm+1|2
, 1
)

6: H := PH
[
Hm

zm+1

]
P , K := PH

[
Km

1

]
P

7: for i = 1, . . . ,m− 1 do
8: z = −hi+1,ikm+1,m+1−ki+1,ihm+1,m+1

hi+1,ikm+1,i−ki+1,ihm+1,i

9: Ṗ := P

(
−z̄
(√

(1 + |z|2)
)−1

,
√

1 + |z|2−1
, i

)
10: if hm+1,m+1

km+1,m+1
<

hi+1,i
ki+1,i

then
11: H = HṖ , K = KṖ

12: a :=
√
|hi+1,i|2
|hi+1,i|2 + |hm+1,i|2

13: P := P (a,−ahm+1,i/hi+1,i, i+ 1)
14: else
15: H := HṖ , K := KṖ

16: a :=
√
|ki+1,i|2
|ki+1,i|2 + |km+1,i|2

17: P := P (a,−akm+1,i/ki+1,i, i+ 1)
18: end if
19: H := PH, K := PK
20: Set hm+1,i := 0 and km+1,i := 0
21: end for
22: Hm+1 := H and Km+1 := K
23: end procedure
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The elements in the last rows of the pencil, which Pi+1 should eliminate, are set
explicitly to zero in Step 18 of the algorithm.
Since the annihilated elements in the last rows are set explicitly to zero, the resulting
structure is exactly a Hessenberg pencil and therefore corresponds exactly to a
structured matrix pencil containing recurrence coefficients of rational functions with
prescribed poles.

9.4 Updating procedures - linear functional

Updating procedures for IEPs related to biOPs and biORFs can, in general, not
make use of unitary similarity transformations. Instead of unitary plane rotations,
nonsingular eliminators will be used, which are essentially 2× 2 triangular matrices.
Let Li denote the class of lower triangular eliminators and Ri the class of upper
triangular eliminators. The class Li ⊂ C(m+1)×(m+1) and Ri ⊂ C(m+1)×(m+1) are
composed, respectively, of matrices of the form

Li :=


Ii−1

1
Im−i

li 1

 and Ri :=


Ii−1

1 ri
Im−i

1

 , (9.17)

with parameters li, ri ∈ C. Breakdowns can occur in the updating procedures proposed
in this section. For simplicity of the exposition we assume that no breakdowns occur,
some remarks will be given regarding breakdowns.
Property 9.1 is important in the following discussion.

Property 9.1 (Inverse of eliminators). If Li ∈ Li, then L−1
i ∈ Li and if Ri ∈ Ri,

then R−1
i ∈ Ri.

An updating procedure for TIEPs is discussed in Section 9.4.1, showing how eliminators
can restore structure in the upper and lower triangular part of a matrix. Then this is
generalized to TPIEPs in Section 9.4.2.

9.4.1 Tridiagonal IEP

An updating procedure for Problem 9.9, the (non-Hermitian) tridiagonal IEP is
proposed here. This procedure could provide an alternative for or complement the
Lanczos algorithms that are developed for pseudo-Jacobi matrices [9,185,186]. Pseudo-
Jacobi matrices have additional structure that must be taken into account. We will
propose an updating procedure for general tridiagonal matrices, the special case of
pseudo-Jacobi matrices is not discussed.
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A solution to a TIEP of size m is available, a tridiagonal matrix Tm ∈ Cm×m and pair
of biorthonormal matrices Vm,Wm ∈ Cm×m satisfying

Tm = WH
mΛVm, Vme1 = v/η, Wme1 = w/ν,

with Λ = diag({zi}mi=1) and wHv = ν̄η 6= 0.
Given new nonzero weights αm+1, βm+1 and a node zm+1 /∈ {zi}mi=1, compute the
tridiagonal matrix Tm+1 ∈ C(m+1)×(m+1) and the biorthonormal pair Vm+1,Wm+1 ∈
C(m+1)×(m+1) satisfying

Tm+1 = WH
m+1

[
Λ

zm+1

]
︸ ︷︷ ︸

=:Λ̃

Vm+1, Vm+1e1 = ṽ/η, Wm+1e1 = w̃/ν

with ṽ =
[
v αm+1

]> and w̃ =
[
w βm+1

]>. These matrices are embedded
in C(m+1)×(m+1), preserving tridiagonality for T̂ , biorthonormality for V̂ , Ŵ and
satisfying the equation ŴH Z̃V̂ = T̂ :

T̂ =
[
Tm

zm+1

]
, V̂ =

[
Vm

1

]
, Ŵ =

[
Wm

1

]
.

Similarly as the updating procedure for HIEPs, first the new weights are introduced
in the first columns of the biorthonormal pair V̂ , Ŵ . This leads to a perturbation of
the structure of the recurrence matrix. The tridiagonal structure is then restored with
similarity transformations using eliminators.

Introduce weights αm+1, βm+1

The first columns of the biorthonormal pair Vm+1,Wm+1 must contain the normalized
weight vectors ṽ/η̃, w̃/ν̃, respectively, where 〈ṽ/η̃, w̃/ν̃〉E = 1. Eliminators L1 ∈ L1
and R1 ∈ R1 are constructed such that they introduce the new weights in the first
columns

V̂ L1R1e1 = ṽ/η̃ and Ŵ (L1)−H(R1)−He1 = w̃/ν̃.

Set V̇ := V̂ L1R1 and Ẇ := Ŵ (L1)−H(R1)−H . The above expressions preserve
biorthonormality, ẆH V̇ = I. The parameters l1, r1 in L1, R1, introducing the weights,
are {

l1 = αm+1
η

r1 = − β̄m+1
ν̄+l1β̄m+1

= β̄m+1
ην̄+β̄m+1αm+1

. (9.18)

The resulting first columns are

V̂ L1R1e1 =

 vη
l1

 , Ŵ (L1)−H(R1)−He1 =

(1 + r̄1 l̄1
)
w
ν

−r̄1

 .
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For numerical computation it can be interesting to be able to scale the resulting first
columns, this is possible by multiplying with L1D1R1, where D1 differs from the
identity matrix only in its first and last element. Details are provided in Appendix
B.2.
The change in basis implies that now the relevant matrix is Ṫ := R−1

1 L−1
1 T̂L1R1, with

structure shown in Figure 9.8.
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Figure 9.8: Structure of R−1

1 L−1
1 T̂L1R1 = Ṫ .

Restore structure

The matrix representation Ṫ of Λ̃ in the new basis is not a tridiagonal matrix. To restore
the tridiagonal structure eliminators are constructed to eliminate the nonzero elements
in the last row and last column deviating from the tridiagonal structure. To preserve the
first columns of V̇ and Ẇ , the first elements are eliminated with L2 ∈ L2 and R2 ∈ R2.
Eliminators Li+1 ∈ Li+1 and Ri+1 ∈ Ri+1, i = 1, . . . ,m − 1, can be constructed to
subsequently eliminate the elements ṫ[i]m+1,i and ṫ

[i]
i,m+1 in Ṫ [i] := R−1

i L−1
i Ṫ [i−1]LiRi,

Ṫ [1] := Ṫ . The parameters are
li+1 = − ṫ

[i]
m+1,i

ṫ
[i]
i+1,i

ri+1 = − ṫ
[i]
i,m+1

ṫ
[i]
i,i+1+li+1 ṫ

[i]
i,m+1

This procedure can break down, namely the denominator in the expression for ri+1 can
vanish. If this denominator becomes very small, then a numerical breakdown might
occur. Under the assumption that no breakdown occurs, the product X =

∏m
k=1 LkRk

restores the tridiagonal structure and provides the solution to the updated TIEP

X−1T̂X = Tm+1.

The resulting biorthonormal bases are Vm+1 = V̂ X and Wm+1 = ŴX−H , but these
are not required in the updating procedure.
Figure 9.9 shows Ṫ [i] during the updating process.
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Figure 9.9: Updating strategy restoring tridiagonal structure.

Algorithm

Algorithm 11 describes the updating procedure for nodes zm+1 /∈ σ(Tm). Assuming
no breakdowns occur this algorithm results in a solution to an updated TIEP. In
the algorithm the notation L(l, i) and R(r, i) is used, which is short for Li ∈ Li and
Ri ∈ Ri with parameters li = l and ri = r, respectively.

Algorithm 11 Updating procedure TIEP
1: Input: Proper tridiagonal matrix Tm ∈ Cm×m, node zm+1 ∈ C, zm+1 /∈ σ(Tm)

and weights αm+1, βm+1 6= 0.
2: Output: Assuming no breakdowns, proper tridiagonal matrix Tm+1 ∈

C(m+1)×(m+1)

3: procedure UpdateTIEP(Tm, zm+1, αm+1, βm+1)
4: L := L

(
αm+1
η , 1

)
, R := R

(
− ηβ̄m+1
ν̄η+β̄m+1αm+1

, 1
)

5: Ṫ := R−1L−1
[
Tm

zm+1

]
LR

6: for k = 1, . . . ,m− 1 do
7: L := L

(
−ṫm+1,k/tk+1,k, k + 1

)
8: R := R

(
ṫk,m+1tk+1,k/

(
ṫk,k+1tk+1,k + ṫm+1,k ṫk,m+1

)
, k + 1

)
9: Ṫ := R−1L−1ṪLR

10: end for
11: Tm+1 := Ṫ
12: end procedure
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9.4.2 Tridiagonal pencil IEP

Using eliminators the solution to a TPIEP can also be updated. Suppose a
solution to the TPIEP with the matrix of nodes Λ = diag({zi}mi=1), weights v =[
α1 α2 . . . αm

]>, w =
[
β2 β2 . . . βm

]> and poles Ξ = {ξi}m−1
i=1 , Θ = {θi}m−2

i=1
is available. This solution consists of biorthonormal matrices Vm,Wm ∈ Cm×m and a
tridiagonal pencil (Tm, Sm) ∈ Cm×m satisfying, for wHv = η̄ν 6= 0,

WH
mΛVmSm = Tm, Vme1 = v

η
, Wme1 = w

ν
. (9.19)

Next, a node zm+1, weights αm+1, βm+1 and poles ξm, θm−1 are added to the
original problem. The new problem consists of nodes Λ̃ = diag({zi}m+1

i=1 ), weights
ṽ =

[
v αm+1

]>, w̃ =
[
w βm+1

]> and poles Ξ̃ = {ξi}mi=1, θ̃ = {θi}m−1
i=1 . The

biorthonormal matrices Vm,Wm ∈ Cm×m are embedded while preserving their
biorthonormality

V̂ :=
[
Vm

1

]
, Ŵ :=

[
Wm

1

]
. (9.20)

And for ŝm+1 and t̂m+1 satisfying zm+1ŝm+1 = t̂m+1, define T̂ and Ŝ as

Λ̃V̂
[
Sm

ŝm+1

]
︸ ︷︷ ︸

=:Ŝ

= V̂

[
Tm

t̂m+1

]
︸ ︷︷ ︸

=:T̂

. (9.21)

The bases V,W do not have to be available in order to execute the updating procedure.
Theorem 9.4 states how a solution can be efficiently obtained from the embedded
matrices (9.20), (9.21) via similarity transformations with eliminators.

Theorem 9.4. Let Vm,Wm ∈ Cm×m, (Tm, Sm) ∈ Cm×m × Cm×m be the solution to
Problem 9.8 of size m and let V̂ , Ŵ , T̂ , Ŝ denote the corresponding embedded matrices
(9.20), (9.21). Then there exist a nonsingular matrix C, eliminators Li ∈ Li, Ri ∈ Ri

, i = 1, 2, . . . ,m and L̇j ∈ Lj, Ṙj ∈ Rj, j = 1, 2, . . . ,m such that

T̃ =
( 1∏
k=m

RkL̇k

)
T̂CL1

(
m∏
k=2

ṘkLk

)
, S̃ =

( 1∏
k=m

RkL̇k

)
ŜCL1

(
m∏
k=2

ṘkLk

)
,

Ṽ = V̂

(
m∏
k=1

L̇−1
k R−1

k

)
and W̃ = Ŵ

(
m∏
k=1

L̇Hk R
H
k

)
,

solve the IEP of size m+ 1. This IEP is obtained by adding a node zm+1 /∈ σ(Tm, Sm),
weights αm+1, βm+1 and poles ξm, θm−1 to the original IEP of dimension m.
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The remainder of this section is dedicated to providing the components required to
prove this theorem. Three steps compose the updating procedure: introduction of the
new weights, which will perturb the structure of the pencil, restoring the structure
and introducing the new poles. The proofs provided in this section are constructive,
they provide the necessary components for an algorithm implementing the updating
procedure. We published our implementation of the algorithm online [163].

Introduce weights αm+1, βm+1

The new weights αm+1, βm+1 can be introduced as described for the TIEP. Let L1 ∈ L1,
R1 ∈ R1 be such that

V̂ L−1
1 R−1

1 e1 = ṽ/η̃ and ŴL−H1 R−H1 e1 = w̃/ν̃.

The new bases lead to the pencil (R1L̇1T̂ , R1L̇1Ŝ), which is no longer a tridiagonal
pencil

Λ̃V̂ L̇−1
1 R−1

1


×

S̆ 0
0

× × 0> ×

 = V̂ L̇−1
1 R−1

1


×

T̆ 0
0

× × 0> ×

 , (9.22)

with T̆ , S̆ tridiagonal matrices of size m which, respectively, differ from T, S only in
their first row.

Restore tridiagonal pencil structure

Using eliminators, the tridiagonal structure of the pencil will be restored, Lemma 9.5
provides the details.
Lemma 9.5. Let (T̂ , Ŝ) denote the embedded pencil (9.21) and R1, L̇1 the matrices
from (9.18). Then, under the assumption that no breakdown occurs, there exist
a nonsingular upper triangular matrix U , eliminators Li ∈ Li, Ri ∈ Ri, for i =
1, 2, . . . ,m− 1 and L̇j ∈ Lj, Ṙj ∈ Rj, j = 2, 3, . . . ,m such that

Ṫ [m] := L̇m

(
m−1∏
k=1

RkL̇k

)
T̂UL1

(
m−1∏
k=2

ṘkLk

)
Ṙm,

Ṡ[m] := L̇m

(
m−1∏
k=1

RkL̇k

)
ŜUL1

(
m−1∏
k=2

ṘkLk

)
Ṙm (9.23)

have tridiagonal structure and the same poles as (T̂ , Ŝ).
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Proof. The proof is by induction. The first step, i = 1, differs from the general iteration
(i ≥ 2). Consider the matrices L̇1, R1 from (9.18), and denote their parameter by l̇1,
r1, respectively. Then the pencil which must be reduced to tridiagonal form is, for
some ṫ[1], ṡ[1] satisfying ṫ[1]zm+1 = ṡ[1],

Ṫ [1] := R1L̇1T̂ =


(1 + l̇1r1)t11 (1 + l̇1r1)t12 0 b1ṫ

[1]

t21 0
0 T (m−1) 0

l̇1t11 l̇1t12 0> ṫ
[1]
m+1,m+1

 ,

Ṡ[1] := R1L̇1Ŝ =


(1 + l̇1r1)s11 (1 + l̇1r1)s12 0 r1ṡ

[1]

s21 0
0 S(m−1) 0

l̇1s11 l̇1s12 0> ṡ
[1]
m+1,m+1

 ,

where T (m−1) and S(m−1) denote, respectively, the principal trailing submatrix of
size (m− 1)× (m− 1) of T and S from (9.19). Note in the above equation that the
matrices are very similar, therefore, we will only explicitly write down Ṫ [i] and omit
Ṡ[i]. The annihilation of the first element in the last row and last column is performed
in two steps. The first step creates colinearity between relevant elements in the pencil
and the second step eliminates the first elements in the last row (and last column)
simultaneously.
First, create colinearity, i.e., find suitable L1 ∈ L1 with parameter l1 and U :=1 u

1
Im−1

 which act on Ṫ [1] as follows

Ṫ [1]UL1 =


t̃11 t̃12 0 r1ṫ

[1]

t̃21 0
0 T (m−1) + ut21e1e

>
1 0

l̇1t11 + l1ṫ
[1] l̇1(t12 + ut11) 0> ṫ

[1]
m+1,m+1

 ,
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where t̃11 := (1 + l̇1r1)t11 + l1r1ṫ
[1]
m+1,m+1, t̃12 := (1 + l̇1r1)(t12 + ut11), t̃21 := t21. The

resulting matrix should satisfy the colinearity conditions

rank
([

t̃12 r1ṫ
[1]
m+1,m+1

s̃12 r1ṡ
[1]
m+1,m+1

])
= 1,

rank
([

t̃21 s̃21

l̇1t11 + a1ṫ
[1]
m+1,m+1 l̇1s11 + l1ṡ

[1]
m+1,m+1

])
= 1,

this can be achieved by choosing appropriate u and l1. Next, L̇2 ∈ L2 and Ṙ2 ∈ R2
eliminate these colinear elements in the last row and last column, i.e.,

L̇2Ṫ [1]UL1Ṙ2 =


t̃11 t̃12 0 0> 0
t̃21 ṫ

[2]
2,m+1

0 T (m−1) + ut̃21e1e
>
1 ḃ2t32

0 0
0 ṫ

[2]
m+1,2 l̇2t23 0> ṫ

[2]
m+1,m+1

 =: Ṫ [2],

where ṫ[2]
m+1,2 := l̇1(t12 +ut11)+ l̇2(ṫ[1]

22 +ut̃21), ṫ[2]
2,m+1 := ṙ1(ṫ[1]

22 +ut̃21) and ṫ[2]
m+1,m+1 :=

(1 + l̇2b1)ṫ[1] + ṙ2 l̇1(t12 +ut11) + ṙ2 l̇2(ṫ[1]
22 +ut21). By the colinearity, the same holds for

Ṡ[2]. This shows that the initial step can be performed using the matrices U,L1, L̇2
and Ṙ2. Note that this U is only required in the first step, in the subsequent steps it
will be replaced by a matrix in Ri. Under the induction hypothesis, we have

Ṫ [i] := L̇iRi−1Ṫ
[i−1]Li−1Ṙi =


T̃ (i−1) t̃i−1,iei 0
t̃i,i−1e

>
i ṫ

[i]
i,m+1

T (m−i+1) ṙiti+1,i

0
0 ṫ

[i]
m+1,i l̇iti,i+1 0> ṫ

[i]
m+1,m+1

 ,

where T (m−i+1) ∈ C(m−i+1)×(m−i+1), the principal trailing submatrix of T (9.19) and
T̃ (i−1) is the (i−1)×(i−1) leading principal submatrix of the solution T̃ to the TPIEP.
All the action takes place in the (m− i+1)× (m− i+1) principal trailing submatrix of
Ṫ [i]. For the proof to hold, Ṫ [i+1] = L̇i+1RiṪ

[i]LiṘi+1 and Ṡ[i+1] = L̇i+1RiṠ
[i]LiṘi+1

must create zeros on positions (m + 1, i) and (i,m + 1). The first step enforcing
colinearity, determining Li ∈ Li and Ri ∈ Ri, can be elegantly formulated using

Ml := si+1,i

[
ti+1,i ṙiti+1,i

ṫ
[i]
m+1,i ṫ

[i]
m+1,m+1

]
− ti+1,i

[
si+1,i ṙisi+1,i

ṡ
[i]
m+1,i ṡ

[1]
m+1,m+1

]
=
[

0 0
× ×

]
,

Mr := si,i+1

[
ti,i+1 ṫ

[i]
i,m+1

l̇iti,i+1 ṫ
[i]
m+1,m+1

]
− ti+1,i

[
si,i+1 ṡ

[i]
i,m+1

l̇isi,i+1 ṡ
[1]
m+1,m+1

]
=
[
0 ×
0 ×

]
.
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They are constructed such that, isolating their active part in Lbi and Rbi , they create
rank one matrices

MlL
b
i =

[
0 0
0 ×

]
and RbiMr =

[
0 0
0 ×

]
.

Clearly, appropriate L̇i+1 ∈ Li+1 and Ṙi+1 ∈ Ri+1 can be found which will eliminate
the ith elements in the last row and column of Ṫ [i+1] and Ṡ[i+1] such that

Ṫ [i+1] := L̇i+1RiṪ
[i]LiṘi+1

=


T̃ (i) t̃i,i+1ei+1 0

t̃i+1,ie
>
i+1 ṫ

[i+1]
i+1,m+1

T (m−i) ṙi+1ti+2,i+1

0
0 ṫ

[i+1]
m+1,i+1 l̇i+1ti+1,i+2 0> ṫ

[i+1]
m+1,m+1

 ,

with ṫ
[i+1]
m+1,i+1 = l̇iti,i+1 + l̇i+1ti+1,i+1, ṫ[i+1] = t̂

[i]
m+1,m+1 + l̇i+1ṙiti+1,i + ṙi+1ṙiti,i+1

and ṫ
[i+1]
i+1,m+1 = ṙiti+1,i + ṙi+1ti+1,i+1. Furthermore, t̃i,i = ti,i + riṫ

[i]
m+1,i + liṫ

[i]
i,m+1,

t̃i,i+1 = (1 + l̇iri)ti,i+1 and t̃i+1,i = (1 + ṙili)ti+1,i. The same holds for Ṡ[i+1] thanks
to the colinearity. Hence, the poles are preserved, t̃i+1,i/s̃i+1,i = ti+1,i/si+1,i = ξi,
i = 1, 2, . . . ,m− 1 and t̃i,i+1/s̃i,i+1 = ti,i+1/si,i+1 = ψ̄i−1, i = 2, 3, . . . ,m− 1.
This can be continued for i < m, thereby obtaining at i = m− 1 a tridiagonal pencil
(Ṫ [m], Ṡ[m]). Whenever ṫ[i] (or ṡ[i]) vanishes for some i, the above transformations
cannot be determined, i.e., a breakdown occurs. This situation is excluded by the
assumption that no breakdowns occur.

The structure restoring process for one of the matrices from the pencil is shown in Figure
9.10, the structure for both matrices in the pencil is at each step the same. Lemma
9.5 shows that a tridiagonal pencil (Ṫ [m], Ṡ[m]) with eigenvalues zi can be constructed
while preserving its poles, i.e., ṫ

[m]
i+1,i

ṡ
[m]
i+1,i

= ξi, i = 1, 2, . . . ,m − 1 and ṫ
[m]
i,i+1

ṡ
[m]
i,i+1

= ψ̄i−1,

i = 2, 3, . . . ,m− 1. However, in general ṫ
[m]
m+1,m

ṡ
[m]
m+1,m

6= ξm and ṫ
[m]
m,m+1

ṡ
[m]
m,m+1

6= ψ̄m−1, which are
the poles belonging to the rational functions that are added to the spaces.
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Ṫ [2]

× ×
× × ×
× × ×
× × × ×
× × ×
× × ×
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Figure 9.10: Updating strategy restoring tridiagonal pencil structure.

Introduce poles ξm, θm−1

The new poles must be introduced in the pencil without disturbing the tridiagonal
structure, Lemma 9.6 provides the details.

Lemma 9.6. Consider a tridiagonal pencil (Ṫ , Ṡ), where ṫm+1,m+1, ṡm+1,m+1 6= 0.
Premultiplication with Rm ∈ Rm and postmultiplication with Lm ∈ Lm suffice to alter,
respectively, the ratio of elements (m,m+ 1) and (m+ 1,m) of (Ṫ , Ṡ) to any values
θm−1 ∈ C̄ and ξm ∈ C̄.

Proof. Only the 2 × 2 trailing principal submatrices of (Ṫ , Ṡ) are altered by the
transformation (RmṪLm, RmṠLm), denoted compactly by[

1 rm
1

] [
ṫm,m ṫm,m+1
ṫm+1,m ṫm+1,m+1

] [
1
lm 1

]
=
[
× α
µ ×

]
[
1 rm

1

] [
ṡm,m ṡm,m+1
ṡm+1,m ṡm+1,m+1

] [
1
lm 1

]
=
[
× β
ν ×

]
.

The formation of the product on the left-hand side shows that, under the assumption
ṫm+1,m+1 6= 0 and ṡm+1,m+1 6= 0, we can create any ratios α/β, µ/ν ∈ C̄.
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9.5 Numerical experiments

The proposed solution strategies, based on Krylov subspace methods and on the
updating procedures, are analyzed numerically. Consider the diagonal matrix of
distinct nodes Λ ∈ Cm×m, a weight vector v ∈ Cm and a set of poles Ξ = {ξi}m−1

i=1 ,
with ξi ∈ C\{0} (the exclusion of ξi = 0 and ξi =∞ is done solely for simplicity of
notation). In case of biorthogonality, an extra weight vector w ∈ Cm and set of poles
Θ is provided. Both solution strategies compute a solution to Problem 9.5, i.e., a
pencil (B,C) such that

WHΛV C = B,

with WHV = I, We1 = w
ν , V e1 = v

η and (B,C) adhering to either Hessenberg or
tridiagonal structure. When computing this in finite precision some errors will arise
and these are measured. The biorthogonality of the formed bases V,W is measured by

erro := ‖WHV − I‖2,

where I is a unit matrix of appropriate size and if we consider an orthogonal basis Q,
then V = W = Q. The accuracy of the recurrence relation, consisting of recurrence
matrices (B,C) and basis V , is measured by

errr := ‖ΛV C − V B‖2
max (‖ΛV C‖2, ‖V B‖2) .

The elements (B,C) represent recurrence coefficients of sequences of biorthogonal
rational functions, {ri}m−1

i=0 and {si}m−1
i=0 , or a single sequence of orthogonal rational

functions {ri}m−1
i=0 . The orthogonality of these functions is checked by constructing

their Gram matrix, which should equal the unit matrix. We get for the orthogonal
case with inner product 〈., .〉m:

errf :=
∥∥∥[〈ri, rj〉m]m−1

i,j=0 − I
∥∥∥

2

and for the biorthogonal case with linear functional Lm{.}:

errf :=
∥∥∥[Lm{risj}]m−1

i,j=0 − I
∥∥∥

2
.

The evaluation of the rational functions {ri} and {si} using its recurrence pencil
(B,C) is discussed in Chapter 7.
The final error metric quantifies the accuracy of the poles. The poles of the computed
pencil (B,C) are compared to the given poles ξi,

errp = max
1≤i≤m−1


∣∣∣B(i+1,i)
C(i+1,i) − ξi

∣∣∣
|ξi|

 .
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For the TPIEP, also the superdiagonal ratios reveal poles and must be taken into
account, which is taken to be the maximum of the above metric and the following

errp = max
2≤i≤m−1


∣∣∣B(i,i+1)
C(i,i+1) − ψ̄i−1

∣∣∣
|ψi−1|

 .

Throughout this section all weights are chosen to be equal to the value 1.
Throughout the following discussion, it is important to be aware of the essential
difference between both solution procedures: the updating procedure starts from an
already known solution to construct the next solution, whereas the Krylov procedure
must start over every time the problem changes. Therefore, the updating procedure is
much more efficient in situations where the solution to a related problem is available.
On the other hand, the Krylov procedure possesses all information about the whole
problem, which typically leads to a more accurate solution.

Hessenberg pencil

Two experiments are discussed. The first uses equidistant nodes on the unit circle and
highlights the numerical stability of the proposed updating procedure. The second
illustrates the influence of the given nodes on the accuracy of the numerical solution
by choosing two nodes close to each other.
The first experiment uses equidistant nodes on the unit circle. Since updating always
adds one node and keeps all others fixed, we cannot have equidistant nodes at each
step. The node is then added at the largest distance from all nodes already generated,
exactly in the middle of two adjacent nodes. This order of adding nodes is chosen
because it is a good order for the updating procedure, the order has little effect on the
final solution (for the same nodes) but strongly influences the intermediate behavior.
The poles Ξ are chosen equidistant on a circle of radius 1.5. The result for problem
sizes m = 3, 18, . . . , 393 is shown in Figure 9.11. The three metrics for the matrix
solution, erro, errr and errp, show very good accuracy for both procedures, with the
Krylov procedure performing slightly better, which can be attributed to the benefit
of solving the complete problem every time. The metric for the orthogonality of the
rational functions, errf, shows that the updating procedure performs much better than
the Krylov procedure.

To explain this, we must look at the condition number κ(B,C) for the pencil (B,C)
obtained by both procedures, shown in Table 9.1. This table shows that the condition of
the system of equations is much larger for the pencil obtained by the Krylov procedure.
The updating procedure performs unitary similarity transformations, therefore if nodes
are located on the unit circle then the pencil consists of unitary matrices and this
leads to much better conditioning than the Krylov procedure, which does not generate
unitary matrices. Note that the pencil (B,C) as a whole is unitary in both cases. The
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Figure 9.11: HPIEP with nodes on the unit circle and poles on a circle with radius
1.5. Error metrics for Krylov ’◦’ and updating ’*’ procedure in log scale for problem
size m.

m 10 100 200 300 400
Update 1.9e01 2.3e02 4.8e02 1.4e03 9.1e03
Krylov 2.9e01 2.8e05 4.0e09 3.3e13 7.7e17

Table 9.1: Condition number κ(B,C) for the pencil (B,C) obtained by the updating
and Krylov procedure for the first experiment, with poles on a circle of radius 1.5, for
problem size m.

condition number κ(B,C) of the solution obtained by the Krylov procedure depends
on the choice of poles. We repeat the above experiment with poles on a circle with
radius 3. Table 9.2 shows a much smaller κ(B,C) for the Krylov solution. This
illustrates the dependence of κ(B,C) of the Krylov solution on the prescribed poles.
The updating solution is much less influenced by the choice of poles.

The second experiment shows how the numerical solution of a HPIEP depends on
the location of the given nodes. The nodes are chosen as above, up to the following
change, the mpth node is chosen on the circle and close to the (mp − 1)th node. That
is, for m ≥ mp nodes, we have m− 1 equidistant on the circle as above, and a node
close to one of these nodes, the distance between these two nodes is given by the angle
ω. For small ω this leads to an underlying discrete inner product with m nodes that
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m 10 100 200 300 400
Update 2.0e01 2.2e02 4.4e02 1.4e03 9.8e02
Krylov 2.4e01 3.2e02 6.1e02 1.8e03 1.4e03

Table 9.2: Condition number κ(B,C) for the pencil (B,C) obtained by the updating
and Krylov procedure for the first experiment, with poles on a circle of radius 3, and
problem size m.

is very close to an inner product with m− 1 nodes. Therefore, the mth orthogonal
rational function will become closer to numerical linear dependence, as ω gets smaller,
with a deterioration of the orthonormality of the generated rational functions as a
consequence. Figure 9.12 shows the results for mp = 50, ω = 10−6 and equidistant
poles on a circle of radius 3. The metrics erro and errr behave nicely, as with the first
experiment. The error on the poles obtained by the updating procedure, errp, makes a
jump when a value m > mp is reached and stagnates thereafter. This jump is caused
by the small value obtained for the last element in the Hessenberg pencil, this element
is the inner product of rmp−1(z) with rmp−2(z) which is small due to the similarity of
the inner product with mp and mp − 1 nodes. And this element is used to introduce
the new pole, but due to the difference in order of magnitude (about the size of ω), loss
of accuracy (about 5-6 digits) is expected. As predicted, the orthonormality, measured
by errf, of the complete set of the m orthogonal rational functions deteriorates for
m > mp. However, if we look at the m − 1 first orthogonal rational functions, the
situation is much better. This means that the loss of orthogonality, as expected by
the closeness of an inner product of m and m− 1 nodes, is isolated in the mth ORF.
Hence, the first m− 1 ORFs are still accurately computed.

Tridiagonal pencil

The tridiagonal pencil is interesting because of the underlying short recurrence relation.
If this can be combined with an inner product, which has preferred numerical properties
over a general linear functional, then it will lead to an efficient procedure to generate
ORFs in a stable manner. This scenario occurs for nodes on the real line and poles
ξi = θ̄i. The first experiment chooses Chebyshev nodes, obtained by projecting the
equidistant nodes on the unit circle onto the real line. The second experiment serves
as a proof of concept, the nodes are chosen equidistant on a thin ellipse, a choice
between the unit circle and Chebyshev nodes, where Chebyshev nodes would be the
limit case (such an ellipse of height zero). For both experiments all weights are equal
to 1, i.e., v =

[
1 . . . 1

]> and w =
[
1 . . . 1

]>.
The metrics for the first experiment, with Chebyshev nodes on the interval [−1, 1] and
equidistant poles on a circle of radius 3, are provided in Figure 9.13. As expected from
using nonunitary similarity transformations, the procedure is no longer numerically
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Figure 9.12: HPIEP with nodes on the unit circle, perturbation of ω = 10−6 at m = 50
and poles on a circle with radius 3. Error metrics for Krylov ’◦’ and updating ’*’
procedure in log scale for problem size m. The metric errf for the m− 1 first ORFs is
indicated by ’+’ for Krylov and ’4’ for updating.

stable, we see a steady deterioration of all metrics. The errors are however still
relatively small, especially for errf. Table 9.3 shows this metric for solutions obtained
by the solution procedures for the HPIEP and TPIEP, which are equivalent except
for the imposed structure on the pencil. The Hessenberg pencil achieves only one
significant digit more than the tridiagonal pencil, which makes the procedures based
on the biorthogonal formulation competitive thanks to the efficiency gained by the
underlying short recurrence relation.

m 18 93 198 288
Update TP e-12.9 e-10.6 e-10.1 e-9.8
Krylov TP e-13.2 e-12.1 e-11.5 e-11.8
Update HP e-13.5 e-11.5 e-10.6 e-10.4
Krylov HP e-13.6 e-12 e-12 e-11.9

Table 9.3: Metric errf for solution of the IEP with Chebyshev nodes in [−1, 1] and
poles equidistant on circle with radius 3. Solutions are obtained by solving the HPIEP
with updating and Krylov procedure and by solving the equivalent TPIEP with its
respective updating and Krylov procedure.



NUMERICAL EXPERIMENTS 213

0 100 200 300
−18
−16
−14
−12
−10
−8

m

lo
g(
er
r o

)

0 100 200 300
−16

−14

−12

−10

m

lo
g(
er
r r

)

0 100 200 300
−16
−15
−14
−13
−12

m

lo
g(
er
r p

)

0 100 200 300

−14

−12

−10

m

lo
g(
er
r f)

Figure 9.13: TPIEP with Chebyshev nodes on the interval [−1, 1] and equidistant
poles on a circle with radius 3. Error metrics for Krylov ’◦’ and updating ’*’ procedure
in log scale for problem size m.

The second experiment uses equidistant nodes on a thin ellipse x2 + (y/0.01)2 = 1,
obtained by compressing the unit circle x2 + y2 = 1 in height. The poles Ξ are
chosen equidistant on a circle of radius 3 and Θ on a circle of radius 4. Results of this
experiment are shown in Figure 9.14. The updating procedure performs well despite its
biorthogonal nature. The solution obtained by the Krylov procedure deteriorates fast,
this can be explained by the fact that it is a general purpose Lanczos-like recurrence
relation, whereas the updating procedure is designed for this specific problem. For
poles which are equal, the situation improves, as is shown by the metrics in Figure
9.15, where Ξ = Θ.

These results show the potential of the biorthogonal procedures, especially for special
cases such as discussed in the first experiment.
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Figure 9.14: TPIEP with equidistant nodes on an ellipse x2 + (y/0.01)2 = 1 and poles
Ξ and Θ on a circle with radius 3 and 4, respectively. Error metrics for Krylov ’◦’ and
updating ’*’ procedure in log scale for problem size m.

9.6 Downdating procedures - inner product

Downdating procedures are procedures that remove an eigenvalue from an available
solution to some IEP. This corresponds to removing a node-weight pair from the
underlying inner product. Downdating an IEP is closely related to downdating matrix
factorizations, which is known to be a much more difficult problem than updating [60].
For least squares problems a downdating procedure is proposed by Björck et al. [25].
Their procedure requires the full QR decomposition of the matrix of interest to be
available. Downdating a Cholesky decomposition is discussed in [25,26].
The downdating procedures proposed here only require the recurrence matrix or pencil
and the node of the inner product to be removed. Downdating is discussed in more
detail for the HIEP and HPIEP. The matrices arising from solving a HIEP are normal
proper Hessenberg matrices with simple spectrum and the pencils from the HPIEP are
normal, proper Hessenberg pencils with simple spectrum. These properties facilitate
the discussion of the procedures proposed for downdating.
The downdating procedures extract an eigenvalue from a matrix or pencil. A single
step of the RQ algorithm applied to a matrix shifted by an eigenvalue allows deflation of
this eigenvalue. Section 9.6.1 discusses the RQ algorithm in more detail and addresses
the difficulties arising from its computation in finite precision. Based on this exposition
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Figure 9.15: TPIEP with equidistant nodes on an ellipse x2 + (y/0.01)2 = 1 and
poles Ξ = Θ on a circle with radius 3. Error metrics for Krylov ’◦’ and updating ’*’
procedure in log scale for problem size m.

Section 9.6.2 proposes two procedures to downdate the HIEP. Section 9.6.3 performs
numerical experiments for the proposed procedures. The generalization of the RQ
algorithm to matrix pencils is the backward RQZ algorithm, which is the subject
of Section 9.6.4. A single step of the backward RQZ algorithm applied to a pencil
shifted by one of its eigenvalues allows deflation of this eigenvalue. Section 9.6.5 uses
this property to downdate a Hessenberg pencil, two new procedures are proposed. A
publication with these results is in preparation [164].

9.6.1 RQ algorithm

The QR algorithm is an algorithm for the computation of eigenvalues of a matrix
A ∈ Cm×m. Usually, a preliminary step reduces A to a proper Hessenberg matrix,
if the Hessenberg matrix is not proper, it can be split into two (or more) smaller
problems for proper Hessenberg matrices. The QR algorithm is thus applied to proper
Hessenberg matrices. In our context the solution to a HIEP is already a proper
Hessenberg matrix, the QR algorithm can be applied immediately.
A single step of the QR algorithm with shift consists of computing the QR
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decomposition of the proper Hessenberg matrix H shifted by λI for some λ ∈ C

H − λI = QR

and then recombining these factors to obtain the Hessenberg matrix

Ĥ = RQ+ λI.

This performs a unitary similarity transformation on the matrix H, since Ĥ =
RQ + λI = QH(H − λI)Q + λI = QHHQ. Note that Q is a unitary Hessenberg
matrix. For details on the QR algorithm and the connection to Krylov subspaces, we
refer to [178].
The RQ algorithm applies the same idea, but now the RQ decomposition of the shifted
matrix is used,

H − λI = RQ̃H ,

the unitary factor in the RQ decomposition is denoted by a complex conjugated matrix
Q̃H , this is merely convention and useful in the following discussion. The unitary
factor Q̃H is a unitary Hessenberg matrix. The recombination is

Ĥ = Q̃HR+ λI

and Ĥ = Q̃HHQ̃.
The theoretical and numerical behavior of the RQ step will be described in more detail
below. Some known results are provided together with the proof if it contributes to
the understanding of the downdating procedure in finite arithmetic.

Perfect shift

When a proper, simple Hessenberg matrix H ∈ Cm×m is shifted by one of its
eigenvalues, it will be called a perfect shift. In exact arithmetic a single RQ step
with perfect shift, λ ∈ σ(H), allows to deflate λ from Ĥ = Q̃HHQ̃. More precisely
Ĥe1 = λe1, where λ ∈ σ(H). Lemma 9.7 leads to a result on invariant subspaces
required to explain the deflation of the perfect shift.

Lemma 9.7 (RQ step with perfect shift [178]). Let H ∈ Cm×m be a proper, simple
Hessenberg matrix and λ ∈ σ(H). Then the triangular factor R in its shifted RQ
decomposition H − λI = RQ̃H satisfies r1,1 := e>1 Re1 = 0 .

Proof. The shifted Hessenberg matrix H − λI is singular. Hence, the upper triangular
matrix R ∈ Cm×m from the RQ decomposition

H − λI = RQ̃H
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must also be singular and therefore a diagonal element ri,i must satisfy ri,i = 0 for
some i. Since H − λI is Hessenberg, its last m − 1 rows are linearly independent,
from which it follows that these rows of R are also linearly independent and therefore
r1,1 = 0.

From Lemma 9.7 it follows that a single RQ step with perfect shift leads to the
decomposition

H − λI = RQ̃H =


0 r1,2 r1,3 . . . r1,m

r2,2 r2,3 . . . r2,m
r3,3 . . . r3,m

. . . ...
rm,m



q̃H1
q̃H2
...
q̃Hm


︸ ︷︷ ︸

=:

[
q̃H1
Q̇H

]
(9.24)

with Q̇ ∈ C(m−1)×m, Q̇Q̇H = I and Q̇q̃1 = 0. Therefore Hq̃1 = λq̃1, i.e., q̃1 is the
eigenvector corresponding to λ. The eigenvector q̃1 forms an invariant subspace under
H of dimension 1. The discovery of an invariant subspace allows deflation.

Deflation

Once an invariant subspace of H is found, Ĥ will have a zero on its subdiagonal. This
allows deflation of the eigenvalue problem, Ĥ is split into two matrices at the location
of the zero. Theorem 9.5 provides the details for a normal Hessenberg matrix.

Theorem 9.5 (Isolate eigenvalue using perfect shift RQ [178]). Consider a proper,
simple, normal Hessenberg matrix H ∈ Cm×m and one of its eigenvalues λ. Let R be
an upper triangular and Q̃H a unitary matrix such that H − λI = RQ̃H . Then for a
proper Hessenberg matrix H̃ ∈ C(m−1)×(m−1),

Ĥ = Q̃HR+ λI = Q̃HHQ̃ =
[
λ 0
0 H̃

]
.

Proof. Let X,Λ be the factors of the eigenvalue decomposition of the normal matrix H,
i.e., H = XΛXH , XHX = I and Λ = diag({λi}mi=1). From Lemma 9.7, more precisely
(9.24), we have that q̃1 = xk for some k. Now, by relying on the orthogonality of the
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eigenvectors we obtain

q̃H1 X = q̃H1

 | | | | |
x1 . . . xk−1 xk xk+1 . . . xm
| | | | |


=
[
0 . . . 0 1 0 . . . 0

]
= e>k ,

and

Q̇HX = Q̇H

 | | | | |
x1 . . . xk−1 xk xk+1 . . . xm
| | | | |



=

 | | | |
× . . . × 0 × . . . ×
| | | |


This isolates the eigenvalue λ corresponding to the eigenvector q̃1

Q̃HR+ λI = Q̃HHQ̃ = Q̃HXΛXHQ̃ =
[
λ 0
0 H̃

]
,

where H̃ ∈ C(m−1)×(m−1) is a proper Hessenberg matrix with spectrum σ(H̃) =
σ(H)\{λ}.

The isolation of the perfect shift λ in Ĥ = Q̃HHQ̃ is the key to downdating solutions
to HIEPs. Before proposing downdating procedures based on the perfect shift RQ
step, the computation of Ĥ in finite precision is discussed.

Numerical computation

In finite precision, blurring can occur, which obstructs deflation [129, 180]. The
computed Ĥ = Q̃HHQ̃ might have a first column that differs significantly from λe1,
depending on the condition number of the eigenvalue λ. The perfect shift RQ step
described above can be implemented in three different ways [129], these are stated in
Theorem 9.6. Mathematically they are equivalent, but numerically the choice matters.
Theorem 9.6 (Equivalencies for RQ step [129]). Let H ∈ Cm×m be a proper
Hessenberg matrix and λ ∈ σ(H). Then the following hold:

1. H has a normalized eigenvector x corresponding to λ

Hx = λx, ‖x‖2 = 1

which is unique up to unimodular scaling and e>mx 6= 0.
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2. An essentially unique sequence of {Ci}m−1
i=1 , Ci ∈ Ci forming the matrix

Q̃H := C1C2 . . . Cm−1

exists that transforms the pair (H,x) to a similar one

(Ĥ, x̂) := (Q̃HHQ̃, Q̃Hx)

with

x̂ = αe1, |α| = 1, Ĥe1 = λe1 and Ĥ is a Hessenberg matrix.

3. The Hessenberg matrix H − λI has the RQ decomposition

H − λI = RQ̃H ,

where e>1 Re1 = 0 and Q̃H is essentially the same matrix as the one transforming
x to x̂.

Ammar et al. [1] proposed to compute the matrix Q̃H by one step of the shifted
RQ algorithm, corresponding to 3 in Theorem 9.6. They studied the case where the
solution to a unitary Hessenberg matrix IEP is downdated, but the idea applies to
the general HIEP as well. This method will be referred to as the matrix method.
Mastronardi and Van Dooren [129] proposed a method based on 2 in Theorem 9.6.
Their procedure leads to a more accurate isolation of the given eigenvalue, on the
condition that the eigenvector is computed with sufficient accuracy. This procedure
will be called the eigenvector method.
Assume that the given eigenvalue λ is such that the smallest singular value of H − λI
equals εmach‖H − λI‖2, denoted as

smin(H − λI) = εmach‖H − λI‖2. (9.25)

If this is not the case, the given λ is not a suitable candidate to perform a perfect shift
RQ step. If the condition is satisfied, then an eigenvector ẋ can be computed which
guarantees

Q̃H(H + ∆H)Q̃ = Ĥ, ‖∆H‖2 ≤ cεmach‖H‖F , ∆H is a Hessenberg matrix,

Q̃H(ẋ+ ∆ẋ) = e1, ‖∆ẋ‖2 ≤ cεmach, with c a constant of order 1,
(9.26)

with Q̃H := C1C2 . . . Cm−1, where Ci ∈ Ci is exactly unitary and eliminates the
element e>i+1

∏m−1
k=i+1 Ckẋ. This implies that (λ, ẋ) is an exact eigenpair of Ĥ, after

setting ĥ1,1 = λ and ĥ2,1 = 0, up to a Hessenberg structured perturbation ∆Ĥ
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satisfying ‖∆Ĥ‖F ≤ cεmach‖H‖F .
Such an eigenvector ẋ can be computed as described below. Details about the error
analysis can be found in [129]. To obtain a suitable eigenvector ẋ, a diagonal scaling is
applied to balance the elements in the available approximate eigenvector x, an inverse
iteration with the scaled vector Dx is applied and the obtained vector is scaled back.
This procedure is described in Algorithm 12.

Algorithm 12 Compute eigenvector for eigenvector method [129]
1: Input: An approximate eigenpair (λ, x), x ∈ Cm of Hessenberg matrixH ∈ Cm×m,

which satisfies smin(H−λI) = εmach‖H−λI‖2, with smin(A) the smallest singular
value of matrix A.

2: Output: An approximate eigenvector ẋ ∈ Cm of H satisfying (9.26).
3: procedure accurateEigenvector(H,λ, x)

4: d := max
(

min
[

max
i≤m−2

{
|xi/xm−1|1/m−i−1} , max

i≤m−2

{
|xi/xm|1/m−i

}]
, 1
)

5: Round d to the nearest power of 2
6: D := diag(1, d, d2, . . . , dm−1)
7: HD := DHD−1, xD = Dx

‖Dx‖2
8: One step of inverse iteration: XD = (HD − λI)x̂D
9: x̂D = x̂D

‖x̂D‖2

10: ẋ := D−1x̂D
‖D−1x̂D‖2 . Scale eigenvector back

11: end procedure

The matrix method and eigenvector method for downdating solutions to HIEPs are
proposed in the next section.

9.6.2 Downdating HIEP

The downdating problem for HIEPs is introduced and it is shown that a RQ step with
perfect shift provides a solution to this problem. Suppose Hm ∈ Cm×m is the solution
to a HIEP, the downdated HIEP removes the node-weight pair z?, w?. Let z? = zk
then the downdated HIEP is Problem 9.7 with

Λ̃ =



z1
. . .

zk−1
zk+1

. . .
zm


, ṽ =



α1
...

αk−1
αk+1
...
αm


.
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The available solution consists of the proper Hessenberg matrix Hm ∈ Cm×m with
simple eigenvalues and Qm ∈ Cm×m satisfying QHmQm = I, Qme1 = v

‖v‖ . The last
property will be used in the equivalent form: QHmv = ‖v‖e1.
The solution of the downdated HIEP, with node z? = zk ∈ σ(Hm) and weight α? = αk,
consists of Hm−1 ∈ C(m−1)×(m−1) and Qm−1 ∈ C(m−1)×(m−1) satisfying

σ(Hm−1) = σ(Hm)\{z?}, QHm−1Qm−1 = I, Qm−1e1 = ṽ

‖ṽ‖
, (9.27)

where ṽ =
[
α1 . . . αk−1 αk+1 . . . αm

]>.
Mathematical solution

The solution (9.27) will be obtained by computing Q̃ ∈ Cm×m satisfying

Q̃HHmQ̃ =
[
z?

Hm−1

]
, Q̃HQ̃ = I, (9.28)

Q̃HQHmv = α̂e1 + ηe2 =


α̂
η
0
...
0

 , with |α̂| = |α?|, |η| = ‖ṽ‖2. (9.29)

The solutionHm−1 ∈ C(m−1)×(m−1) is obtained by deflating z? from Q̃HHmQ̃. Clearly,
since z? is known and is an eigenvalue of Hm, the RQ step with perfect shift provides
the solution to this downdated HIEP. The conditions (9.28) are satisfied by the matrices
in the RQ step, see Theorem 9.5. Condition (9.29) reveals why a RQ step is used
instead of a QR step.
The matrix Q̃H is a unitary Hessenberg matrix if it is computed as H − z?I = RQ̃H ,
and this results in

Q̃HQHmv = Q̃H


‖v‖
0
0
...
0

 =


α̂
η
0
...
0

 ,
with α̂, η as in (9.29). If, on the other hand, the QR decomposition is used H − z?I =
QR, then Q is a unitary Hessenberg matrix and QHQHmv =

[
× × . . . ×

]>, i.e., a
vector full of generic nonzeros. Thus the QR decomposition does not (immediately)
lead to an appropriate solution to the downdated HIEP.
Next the matrix and eigenvector method, discussed in Section 9.6.1, are introduced
for solving the downdated HIEP.
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Numerical procedures

Algorithm 13 provides the matrix method, since usually the QR algorithm is available,
but not the RQ algorithm, the algorithm uses matrix transformations such that the
QR algorithm can be used to apply an RQ step. Algorithm 14 is an auxiliary procedure

Algorithm 13 Downdating procedure: matrix method
1: Input: Proper Hessenberg matrix Hm ∈ Cm×m, node z? ∈ σ(Hm).
2: Output: Proper Hessenberg matrixHm−1 ∈ C(m−1)×(m−1), such that σ(Hm−1) =
σ(Hm)\z?.

3: procedure DowndateHIEP_matrix(Hm, z
?)

4: J =

 1
··
·

1

 ∈ Cm×m

5: Compute QR decomposition of J(H − z?I)>J =: QR
6: Q := JQ>J , R := JR>J
7: H := QR+ z?I

8:

[
×

Hm−1

]
:= H

9: end procedure

used in the eigenvector method proposed in Algorithm 15.

Algorithm 14 Compute core transformation
1: Input: a, b ∈ C.
2: Output: C ∈ C2×2 such that C

[
a
b

]
=
[
â
0

]
, with |â| =

√
|a|2 + |b|2.

3: procedure CoreTransformation(a, b)
4: η := |a|+ |b|

√
| a
|a|+|b| |2 + | b

|a|+|b| |2

5: c := |a|
η

6: s = ab̄
|a|η

7: end procedure

For the actual implementation of Algorithm 15, the condition on the eigenvector x,
specified in [129, Theorem 4.2], is checked. If the given eigenvector x satisfies the
condition, no scaling is needed and the core transformations forming Q̃H reduce the
eigenvector x, i.e, Step 4 is skipped and ẋ := x. If the condition for x is not satisfied,
Step 4 will compute a suitable eigenvector ẋ.
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Algorithm 15 Downdating procedure: eigenvector method
1: Input: Proper Hessenberg matrix Hm ∈ Cm×m, node z? ∈ σ(Hm), approximate

eigenvector x ∈ Cm corresponding to z?.
2: Output: Proper Hessenberg matrixHm−1 ∈ C(m−1)×(m−1), such that σ(Hm−1) =
σ(Hm)\z?.

3: procedure DowndateHIEP_eigenvector(Hm, z
?, x)

4: ẋ = accurateEigevector(Hm, z
?, x)

5: H := Hm

6: for i = m : −1 : 2 do
7: Ĉ := CoreTransformation(ẋi−1, ẋi)
8: C := Ii−2 ⊕ Ĉ ⊕ Im−i
9: ẋ = Cẋ

10: H = CHCH

11: end for
12:

[
×

Hm−1

]
:= H

13: end procedure

9.6.3 Numerical experiments

Numerical experiments are performed for the matrix and eigenvector method. The
setup is as follows. A solution Hm, Qm ∈ Cm×m is available to a HIEP, with weights
{αi}mi=1 all equal to 1 and some nodes {zi}mi=1. The nodes are imposed by the
experiments below. One by one nodes are downdated from Hm, resulting in Hm−l,
l = 1, 2, . . . ,m/2, we will downdate half of the nodes. The error metrics erro, errr
and errf from Section 9.5 are used. For the current situation, (B,C) = (Hm−l, I),
V = W = Qm−l and ri = pi ∈ Pi. An additional metric, which quantifies how well the
first column of Qm−l represents the weight vector ṽ :=

[
1 . . . 1

]> ∈ Cm−l, is used

errw := ‖‖ṽ‖2Qe1 − ṽ‖2.

Three choices of nodes are discussed: nodes equidistant on the unit circle, Chebyshev
nodes and random nodes inside of the unit circle. The former two are the same as
used in Section 9.5, details can be found there.
The initial solution Hm, Qm is computed via the Arnoldi iteration. The eigenvector
method requires the eigenvector corresponding to the node that will be downdated.
This eigenvector is computed by a QR step with perfect shift and iterative refinement
is applied until a relaxed version of condition (9.25) is satisfied:

smin(H − λI) = 100εmach‖H − λI‖2.

A thorough analysis of the effect of this relaxation is future research.
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Nodes on the unit circle

For m nodes equidistant on the unit circle, m/2 nodes are downdated in the reverse
order as explained for updating in Section 9.5. Figure 9.16 shows the downdating of
these nodes as performed by the matrix and eigenvector method. The errors for the
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Figure 9.16: Error metrics for downdating with m = 300 nodes equidistant on the
unit circle. Blue ’?’ corresponds to the matrix method and red ’◦’ to the eigenvector
method.

matrix method increase more quickly than for the eigenvector method. The eigenvector
method, as it is implemented for this experiment, is more expensive than the matrix
method.

Chebyshev nodes

Figure 9.17 shows the downdating of a Jacobi matrix Hm for Chebyshev nodes on the
interval [−1, 1]. The downdating is performed in the reverse order as described for the
Chebyshev nodes for updating in Section 9.5. The error errf is significantly larger for
this experiment than for the first experiment. This can be explained by the condition
of polynomial evaluation for the matrices Hm−l in the nodes.
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Figure 9.17: Error metrics for downdating with m = 300 Chebyshev nodes. Blue ’?’
corresponds to the matrix method and red ’◦’ to the eigenvector method.

Complex plane

The final experiment tests a more general case, m nodes are generated in the complex
plane, lying inside the unit circle. Then m/2 nodes are downdated, in no particular
order. Figure 9.18 shows the metrics. Again the eigenvector method performs slightly
better. The conditioning of the corresponding polynomial evaluation is very large, we
have omitted the metric errf for this reason.

Conclusion

The eigenvector method performs better than the matrix method. The current
implementation of the eigenvector method is more expensive than the matrix method.
Both methods show promising results for these simple experiments, but a more
thorough study to their finite precision behavior is required. This is future research.
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Figure 9.18: Error metrics for downdating with m = 100 nodes randomly chosen
inside the unit circle. Blue ’?’ corresponds to the matrix method and red ’◦’ to the
eigenvector method.

9.6.4 RQZ algorithm

The RQZ algorithm is a generalization of the QR algorithm that operates on Hessenberg
pencils. This suggests that it might be suited to downdate HPIEPs. The (backward)
RQZ step [40] performs nested subspace iterations and consists of essentially 2
operations acting on Hessenberg pencils, pole swapping and pole changing. These
operations are discussed and the backward RQZ step with perfect shift is stated.
Some terminology is introduced to facilitate the discussion of the pole swapping and
changing operations that are discussed below. The pair of subdiagonal elements
(hi+1,i, ki+1,i) of a Hessenberg pencil (H,K) ∈ Cm×m × Cm×m will be referred to as
pole position i. The poles Ξ = {ξj}m−1

j=1 are distributed, in factored form ξj = aj
bj

over the pole positions. If ξj = aj
bj

appears on pole position l, then hl+1,l = aj and
kl+1,l = bj . Note that this is a break from the usual convention in this thesis that
ξi = hi+1,i

ki+1,i
, i.e., that ξi always appears on pole position i.
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Pole swapping

A pole swap is the interchanging of poles on two neighboring pole positions, i.e., ξi
appearing on pole position i and ξi+1 on position i + 1 are interchanged such that
ξi now appears on pole position i+ 1 and ξi+1 on position i. Lemma 9.8 states that
swapping poles can be performed by core transformations.

Lemma 9.8 (Pole swapping [18, 40]). Consider the proper Hessenberg pencil with
poles ξ1 = h1,1

k1,1
, ξ2 = h2,2

k2,2
∈ C on pole position 1 and 2, respectively,

H =
[
h1,1 h1,2

h2,2

]
, K =

[
k1,1 k1,2

k2,2

]
.

Then core transformations C, Ċ ∈ C2×2 can be constructed such that

CHHĊ = CH
[
h1,1 h1,2

h2,2

]
Ċ =

[
h̃1,1 h̃1,2

h̃2,2

]
,

CHKĊ = CH
[
k1,1 k1,2

k2,2

]
Ċ =

[
k̃1,1 k̃1,2

k̃2,2

]
,

where h̃2,2
k̃2,2

= ξ1 and h̃1,1
k̃1,1

= ξ2, i.e., ξ1 appears on pole position 2 and ξ2 appears on
pole position 1.

Proof. The procedure consists of three steps

1. Compute M := k2,2Ĥ − h2,2K̂

M =
[
k2,2h1,1 − h2,2k1,1 k2,2h1,2 − h2,2k1,2

0 0

]
=
[
× ×
0 0

]
.

2. Compute Ċ such that MĊ =
[
0 ×
0 0

]
which implies that

rank
([
ĤĊe1 K̂Ċe1

])
= 1,

i.e., the first column of ĤĊ and K̂Ċ are colinear.

3. Compute C such that CHĤĊ =
[
×
0

]
, from which immediately follows that

CHK̂Ċ =
[
×
0

]
, i.e., simultaneous elimination of the element on position (2, 1).
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The resulting matrices H̃ = CHHĊ and K̃ = CHKĊ satisfy the stated property.

Note that this procedure corresponds to the structure restoring procedure that
is described in the proof of Lemma 9.3 in the context of updating a HPIEP. In
order to apply Lemma 9.8 to a Hessenberg pencil (H,K) ∈ Cm×m × Cm×m of
size m > 2, plane rotations Ci, Ċi ∈ Ci can be constructed with as its parameters
those elements appearing in C, Ċ obtained from Lemma 9.8 applied to the subpencil([
hi,i−1 hi,i

hi+1,i

]
,

[
ki,i−1 ki,i

ki+1,i

])
. Let ξ = hi,i−1

ki,i−1
appear on pole position i− 1 and

θ = hi+1,i
ki+1,i

on pole position i. Then the pencil (CHi HĊi, CHi KĊi) will have θ on pole
position i− 1 and ξ on pole position i. All other poles in the pencil (H,K) remain
unaltered by the core transformations Ci, Ċi.

Pole changing

Changing a pole is possible on the first pole position or the last, i.e., pole position 1 or
m− 1 for a pencil of size m. Lemma 9.9 states that changing a pole can be performed
by a unitary similarity transformation.

Lemma 9.9 (Changing pole - first pole position [18,40]). Let (H,K) ∈ Cm×m×Cm×m
be a proper Hessenberg pencil with poles Ξ = {ξ1, ξ2, ξ3, . . . , ξm−1}, where ξi ∈ C̄
appears on pole position i, i.e., ξ1 = h2,1

k2,1
. Let ξ̂ = â

b̂
/∈ σ(H,K) be a given pole.

Consider the core transformation C1 ∈ C1 which, for an arbitrary nonzero constant γ
and x := γ(b̂H − âK)(k2,1H − h2,1K)−1e1, satisfies

CH1 x = αe1.

Premultiplication with C1 introduces the pole ξ̂ in pole position 1, removing ξ1 in the
process. That is, (Ĥ, K̂) := (CH1 H,CH1 K) is a proper Hessenberg pencil with poles
{ξ̂, ξ2, ξ3, . . . , ξm−1}.

Proof. Since H and K are both Hessenberg matrices, He1 = h1,1e1 + h2,1e2 and
Ke1 = k1,1e1 + k2,1e2. Therefore it is not required to compute any inverses since
(k2,1H − h2,1K)−1e1 = 1

k2,1h1,1−h2,1k1,1
e1. Thus

x = γ̂

k2,1h1,1 − h2,1k1,1


b̂h1,1 − âk1,1
b̂h2,1 − âk2,1

0
...
0
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and clearly a core transformation C1 :=

ā −b̄
b a

Im−2

 can be constructed such

that CH1 x = αe1. The core transformation is determined by |a|2 + |b|2 = 1 and
−b(b̂h11 + āk11) + ā(b̂k11 + āh11) = 0. The latter equation can be rewritten as

−b(b̂h11 + āk11) + ā(b̂k11 + āh11) = 0

⇔ b̂(−bh11 + āh2,1)− â(−bk11 + āk21) = 0

⇔ −bh11 + āh2,1

−bk11 + āk2,1

â

b̂
.

The statement follows by noting that ĥ = −bh11 + āh2,1 = â and k̂ = −bk11 + āk2,1 =
b̂.

The pole on the last pole position can also be changed, as stated in Lemma 9.10.

Lemma 9.10 (Changing pole - last pole position [18, 40]). Let (H,K) ∈ Cm×m ×
Cm×m be a proper Hessenberg pencil with poles Ξ = {ξ1, . . . , ξm−2, ξm−1}, where
ξi ∈ C̄ appears on pole position i, i.e., ξm−1 = hm,m−1

km,m−1
. Let ξ̂ = â

b̂
/∈ σ(H,K) be a

given pole. Consider the core transformation Ċm−1 ∈ Cm−1 which, for an arbitrary
nonzero constant γ and x> := γe>m(km,m−1H − hm,m−1K)−1(b̂H − âK), satisfies

x>Ċm−1 = αem

Postmultiplication with C1 introduces the pole ξ̂ in pole position m− 1, removing ξm−1
in the process. That is, (Ĥ, K̂) := (HĊm−1,KĊm−1) is a proper Hessenberg pencil
with poles {ξ1, . . . , ξm−3, ξm−2, ξ̂}.

Proof. Similar to the proof of Lemma 9.9.

Perfect shift RQZ

A backward RQZ step combines the pole changing and pole swapping operation
to perform nested subspace iteration [40]. Consider a proper Hessenberg pencil
(H,K) ∈ Cm×m × Cm×m with poles Ξ = {ξ1, . . . , ξm−1}, where ξi appears on pole
position i. For a given shift λ = a

b ∈ C a backward RQZ step consists of the following
three steps

1. Introduce the shift λ into the last pole position, removing ξm−1 in the process,
see Lemma 9.10.
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2. Swap poles, via the procedure in Lemma 9.8, until λ appears on the first pole
position.

3. Remove the shift λ, now on pole position 1, by reintroducing the removed pole
ξm−1 by applying Lemma 9.9.

The backward RQZ step is described in Algorithm 16.

Algorithm 16 Backward RQZ step
1: Input: Proper Hessenberg pencil (Hm,Km) ∈ Cm×m×Cm×m with poles {ξi}m−1

i=1 ,
ξi := hi+1,i

ki+1,i
and a shift λ = a

b ∈ C.
2: Output: Hessenberg pencil (Ĥ, K̂) ∈ Cm×m × Cm×m, unitarily similar to

(Hm,Km), with ξi := ĥi+2,i+1

k̂i+2,i+1
for i = 1, 2, . . . ,m− 2.

3: procedure RQZ(Hm,Km, λ)
4: H := Hm, K := Km

5: Ĉ := CoreTransformation(bhm,m − akm,m, bhm−1,m − akm−1,m)
6: Ċ := Im−2 ⊕ Ĉ
7: H = HĊ, K = KĊ . Introduces shift
8: for i = m− 1 : −1 : 2 do . Swap shift to top
9: M := ki+1,iH − hi+1,iK

10: Ĉ := CoreTransformation(m1,2,m1,1)
11: Ċ := Ii−2 ⊕ Ĉ ⊕ Im−i
12: if hi+1,i

ki+1,i
<

hi,i−1
ki,i−1

then
13: H = HĊ, K = KĊ
14: x := Hei−1
15: else
16: H = HĊ, K = KĊ
17: x := Kei−1
18: end if
19: Ĉ := CoreTransformation(e>i x, e>i+1x)
20: C := Ii−1 ⊕ Ĉ ⊕ Im−i−1
21: H = CH, K = CK
22: end for
23: Ĉ := CoreTransformation(k̃h1,1 − h̃k1,1, k̃h2,1 − h̃k2,1), with h̃

k̃
= ξm−1

24: C := Ĉ ⊕ Im−2
25: H = CH, K = CK . Remove shift
26: Ĥ := H, K̂ := K
27: end procedure
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If the backward RQZ step is applied with a perfect shift, then deflation occurs in the
first column of the resulting pencil. Theorem 9.7 states this result formally.

Theorem 9.7 (Deflation for perfect shift backward RQZ [37, Theorem 3.8.1]). Let
(H,K) be a m×m proper Hessenberg pencil with poles Ξ = {ξ1, ξ2, . . . , ξm−1}, where
the poles are not necessarily distinct from the eigenvalues. Let σ ∈ C̄ be an eigenvalue
of (H,K) with λ /∈ Ξ. Then a backward RQZ step with perfect shift λ deflates the first
column.

Proof. See [37], where it is given for the forward RQZ step.

It should be noted that in finite precision blurring can obstruct the deflation, just as
in the RQ step with perfect shift for Hessenberg matrices.

9.6.5 Downdating HPIEP

A backward RQZ step with perfect shift is suitable for downdating the solution to a
HPIEP. This follows from Theorem 9.7. The solution (Hm,Km) ∈ Cm×m × Cm×m
and Qm ∈ Cm×m to a HPIEP will be downdated. Suppose this HPIEP is formulated
with

Λ = diag(z1, . . . , zm), v =
[
α1 . . . αm

]>
, Ξ = {ξ1, . . . , ξm−1}.

The downdated HPIEP is obtained by removing a node-weight pair z?, α? and a pole
ξ? from the HPIEP formulation. Let z? = zk, then the associated weight is αk = α?.
The pole ξ? that will be removed can be chosen independently of the node-weight pair,
let ξ? = ξi. Then the downdated HPIEP is the HPIEP for

Λ̃ =



z1
. . .

zk−1
zk+1

. . .
zm


, ṽ =



α1
...

αk−1
αk+1
...
αm



>

, Ξ̃ = Ξ\{ξi}.

The downdating procedure consists of a preliminary step, bringing ξ? into the last
pole position, and a backward RQZ step with shift equal to z?. Since the shift
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λ = z? = zk ∈ σ(Hm,Km), by Theorem 9.7, the resulting pencil (H̃, K̃) has structure



h
× × × . . . × ×
× × × . . . × ×

. . . ...
...

...
× . . . × ×

. . . ...
...

× ×


,



k
× × × . . . × ×
× × × . . . × ×

. . . ...
...

...
× . . . × ×

. . . ...
...

× ×




,

where h
k = z?, the node to be downdated, and the set of poles of the (m− 1)× (m− 1)

principal trailing submatrix equals Ξ̃ = Ξ\ξ?. This structure implies that the eigenvalue
z? can be deflated and that the pole ξ? is removed from the denominator of the
rational functions. This procedure is in fact a generalization of the matrix method for
downdating HIEPs to downdating HPIEPs.
A generalization of the eigenvector method can also be devised. In this case, the left
and right eigenvectors x?l , x?r of the pencil (Hm,Km) corresponding to an eigenvalue z?
are required. The two matrices, formed by a product of core transformations, reducing
these eigenvectors to a multiple of the canonical unit vector, are mathematically the
same as those obtained by the RQZ step with perfect shift. Developing this method
further is future research.

9.7 Conclusion

Numerical procedures based on structured matrix theory are proposed to solve the
problem of generating (bi)orthogonal rational functions or polynomials. The relation
of (bi)ORFs to certain structured matrices or pencils allows the development of new
procedures to solve this problem. The rational Arnoldi iteration can be applied
to generate orthogonal rational functions and the novel rational Lanczos iteration
to generate biorthogonal rational functions. Several new updating procedures are
proposed, a parallelizable variant for orthogonal polynomials, numerically stable
updating procedures for orthogonal rational functions based on the related Hessenberg
pencil and an updating procedure for biorthogonal rational functions. For downdating
of a sequence of orthogonal polynomials, two approaches are discussed. One approach,
the eigenvector method, is new in the sense that it has not been applied in this context
yet. The first steps are taken to generalize the downdating procedures to orthogonal
rational functions.



Chapter 10

Conclusion and future research

In this manuscript a general biorthogonal framework is described to classify all the
structured matrices and pencils appearing in the study of rational Krylov subspaces.
These structured pencils contain the recurrence coefficients of (bi)orthogonal bases
spanning rational Krylov subspaces. We showed that a tridiagonal recurrence pencil
suffices to represent biorthogonal bases. This leads to the most efficient procedure
to compute such bases. This procedure is introduced here and is called the rational
Lanczos iteration.

The Gram matrices that appear for rational Krylov subspace exhibit certain
displacement structure. We have shown that for biorthogonal rational Krylov subspaces
the associated Gram matrix always has displacement rank at most 2. The displacement
operators which reveal the displacement structure are derived and a procedure to
construct such operators is described. Using these displacement operators, a Levinson
procedure is used to derive a coupled short recurrence relation to generate biorthogonal
bases for a specific pair of extended Krylov subspaces.

These structured matrices and pencils not only appear in the context of Krylov
subspace methods, they are also recurrence pencils for sequences of (bi)orthogonal
rational functions with prescribed poles. We identified which (bi)orthogonal rational
functions are related to (bi)orthogonal bases for rational Krylov subspaces. Using this
relation, procedures for rational Krylov subspaces can be applied to rational functions.
Most notably, the rational Lanczos iteration is suitable to compute the recurrence
coefficients of biorthogonal rational functions for a given linear functional.

The relation between structured recurrence pencils and (bi)orthogonal rational
functions can also be exploited directly. We developed several updating procedures
based on structured matrices to compute the recurrence coefficients of (bi)orthogonal
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rational functions, if the corresponding inner product or linear functional is given.
A parallelizable variant is derived for orthogonal polynomials. A numerically stable
procedure is designed for orthogonal rational functions. And a procedure to generate
biorthogonal rational functions is proposed.

Two procedures to compute the perfect shift QR step are applied to the problem
of downdating orthogonal polynomials. One of these procedures is generalized for
the application to downdating orthogonal rational functions. And the first step to
generalize the other procedure to the downdating of ORFs is taken as well.

10.1 Contributions

An overview of the main contributions of this manuscript is provided below.

Chapter 3 contains mostly known results, three results are new:

• Lemma 3.7 provides a recurrence relation for orthogonal basis vectors of
polynomial Krylov subspaces in terms of a rank structured matrix.

• An alternative proof is given for the structure of the recurrence matrix for
biorthogonal basis vectors of polynomial Krylov subspaces, stated in Lemma 3.8.

• Theorem 3.1 generalizes a known result from normal matrices to diagonalizable
matrices.

Chapter 4 generalizes some proofs appearing in literature and introduces the general
framework classifying all structured matrices and pencils appearing for biorthogonal
bases of rational Krylov subspaces. The contents of this chapter are published [165].

• Theorem 4.1 generalizes a known result from normal matrices to diagonalizable
matrices and the proof provides a new decomposition of rational Krylov bases.

• Section 4.4 proves the structure of recurrence matrices and pencils which generate
biorthogonal bases for rational Krylov subspaces. It also provides a short overview
of notable special cases of these results appearing in the literature.

Chapter 5 contains a new result on the displacement structure of Gram matrices
appearing in rational Krylov subspaces.

• Section 5.2 studies the displacement operators for Gram matrices arising from
rational Krylov subspaces using the decomposition of rational Krylov bases. This
leads to constructive proofs, which allows the construction of these displacement
operators.
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• Lemma 5.6 is a new result on the displacement structure of Gram matrices
arising from rational Krylov subspaces. This lemma also implies the existence of
three term recurrence relations for the construction of biorthogonal bases.

Chapter 6 and Chapter 7 identify the inner products and linear functionals for
polynomials and rational functions that are related to the Euclidean inner product on
(rational) Krylov subspaces.

• Lemma 6.5 is a new result for biorthogonal polynomials linking a linear functional
to the Euclidean inner product on polynomial Krylov subspaces.

• Lemma 7.2 is a new result for biorthogonal rational functions, linking a linear
functional to the Euclidean inner product on rational Krylov subspaces.

Chapter 8 contains the results of two published papers [165,166].

• Section 8.1 describes the rational Lanczos iteration, whose derivation can be
found in Appendix B.1. Its validity is tested by performing some numerical
experiments.

• Section 8.2.1 derives new short recurrence relations for biorthogonal bases for
CMV-like extended Krylov subspaces.

• Section 8.2.2 provides a new Levinson procedure for Gram matrices arising from
CMV-like extended Krylov subspaces.

• Section 8.2.3 shows how the CMV decomposition can be retrieved as a special
case when the matrix generating the extended Krylov subspaces is unitary.

Chapter 9 contains several new results. The Krylov and updating procedures are
published [167]. The recursive updating procedure for polynomials is based on an
article in preparation [164], as well as the downdating procedures.

• Problem 9.6 and Problem 9.8 are new formulations for the problem of computing
(bi)orthogonal rational functions.

• Theorem 9.2 shows that the rational Lanczos iteration is suitable to construct
biorthogonal rational functions.

• Section 9.3.2 introduces a solution procedure based on unitary similarity trans-
formations that merges two Hessenberg matrices for representing polynomials
orthogonal to some inner product to obtain a Hessenberg matrix for polynomials
orthogonal with respect to the sum of these inner products.
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• Section 9.3.3 proposes a procedure to update solutions to Hessenberg pencil
inverse eigenvalue problems. This can be used to generate orthogonal rational
functions.

• Section 9.4.2 proposes a procedure to update solutions to tridiagonal pencil
inverse eigenvalue problems. This can be used to generate biorthogonal rational
functions.

• Section 9.6 applies results from structured matrix error analysis to the problem
of downdating polynomials and generalizes the idea to rational functions.

10.2 Future research

This manuscript answered some questions and generated new questions and possible
directions for research. We list here some possible topics for future research.

• The proposed rational Lanczos iteration is a general purpose algorithm. A
proper error analysis of this iteration is required to make it suitable for numerical
computation. Restriction to specific problems can facilitate this analysis. For
example, in moment matching for model order reduction the poles in both Krylov
spaces are chosen to be equal and this facilitates the study of the iteration. An
in-depth analysis of rational Lanczos iterations for state space equations for
general matrices is a possible avenue. Another example is the tridiagonal pencil
inverse eigenvalue problem. The Krylov subspaces are generated for a simple
diagonal matrix. Preliminary numerical tests show that the rational Lanczos
iteration performs well, considering that it has not been adapted to this specific
case. An adaptation of the iteration to this case and corresponding error analysis
is necessary to develop a robust and efficient algorithm to generate biorthogonal
rational functions.

• The identification of the structure of Gram matrices appearing in rational Krylov
subspaces allow to develop Levinson procedures for these Gram matrices. A
specific instance is provided in this thesis. Does the knowledge of the displacement
operators lead to a general Levinson procedure that can be used for any Gram
matrix arising from rational Krylov subspaces?

• In numerical analysis, quadrature rules for highly oscillatory integrals use kissing
polynomials. These polynomials are orthogonal with respect to a specific linear
functional, i.e., they are biorthogonal polynomials. A stable procedure to generate
these polynomials has yet to be developed. The updating procedure based on a
tridiagonal inverse eigenvalue problem might provide a good starting point.
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• The pseudo-Jacobi inverse eigenvalue problem is a specific instance of the
tridiagonal IEP. Current procedures make use of the non-Hermitian Lanczos
iteration. An adaptation of the updating procedure for tridiagonal IEPs might
provide a more stable alternative to Lanczos-based procedures.

• Throughout this manuscript the connections between the Euclidean inner product
and inner products or linear functionals for polynomials or rational functions
are derived for diagonalizable matrices. If the matrix is not diagonalizable,
its Jordan form will lead to an inner product or linear functional containing
derivatives of these polynomials or rational functions. This is related to Sobolev
orthogonality. Is it possible to develop algorithms, similar to those proposed
here, for this case?

• The matrix method for downdating procedures is generalized from the polynomial
case to the rational function case. The eigenvector method can also be generalized
from the polynomial case to the rational function case. The necessary theory
and error analysis must still be developed.

• In least squares problems sometimes new data becomes available and old data
can be forgotten. If we possess a solution to a least squares problem, new
data can be added efficiently by an updating procedure and old data can be
removed efficiently by downdating. Removing old data and adding new data
consecutively leads to a so-called sliding window scheme. Can the up-and
downdating procedures in this manuscript be combined to develop a numerically
stable sliding window scheme?

• Block Krylov methods are related to vector orthogonal functions. Can similar
relationships, as presented in this manuscript, be derived and exploited for the
block case?

• In this thesis the poles for the rational Krylov subspaces or rational functions are
assumed to be given. A proper choice of poles depends on the application and is
paramount to developing effective procedures. Two applications are solving least
squares problems involving rational functions using the techniques presented
here and model order reduction using the rational Lanczos iteration. Can these
be combined effectively with the AAA algorithm [131] to choose the poles of the
rational functions?





Appendix A

A collection of proofs

This appendix contains some alternative proofs, which are very similar to proofs
already included in the manuscript. And proofs which are too technical and lengthy
to be included in the manuscript itself.

A.1 Proof Hermitial RatLan

The proof to Theorem 4.7 is given here.

Proof. From the rational Arnoldi iteration, in a simplified form, we have

hk+1,kqk = (A− ξkI)−1Aqk−1 −
k−1∑
i=0

hi,kqi,

which expresses hk+1,kqk in the basis {(A−ξkI)−1Aqk−1, qk−1, . . . , q0} for the subspace

Kk+1(A, v; Ξ). In matrix notation, for Qk+1 :=
[
q0 . . . qk

]
and Ik =

[
Ik
0

]
,

AQk+1 (Hk − Ik) = Qk+1

Hk

ξ1 . . .
ξk


 .
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Express h̃k+1,kqk in another basis {(A − ξkI)−1Aqk−1, q̃k−1, . . . , q̃0}, where q̃i :=
(A− ξk)−1(A− ξi−1)qi and ξ0 6= 0,

h̃k+1,kqk = (A− ξkI)−1Aqk−1 −
k−1∑
i=0

h̃i,kq̃i

= (A− ξkI)−1Aqk−1 −
k−1∑
i=0

h̃i,k(A− ξk)−1(A− ξi−1)qi.

Now write it in matrix notation, use

(A− ξkI)h̃k+1,kqk = Aqk−1 − (A− ξkI)
k−1∑
i=0

h̃i,k(A− ξk)−1(A− ξi−1)qi

= Aqk−1 −
k−1∑
i=0

h̃i,k(A− ξi−1)qi

⇔ AQk+1


h̃1,k
...

h̃k−1,k
h̃k,k − 1
h̃k+1,k

 = Qk+1


ξ0h̃1,k

...
ξk−2h̃k−1,k
ξk−1h̃k,k − 1
ξkh̃k+1,k


to obtain

AQk+1

(
H̃k − Ik

)
= Qk+1

ξ0 . . .
ξk

 H̃k.
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From this expression it is possible to show that the Hessenberg matrix H̃k is Hermitian
and, thus, tridiagonal. Assume that H̃k is nonsingular, postmultiply by H̃−1

k ,

QHk+1AQk+1




1
. . .

1
x1 . . . xk

−
[

H̃−1
k

0 . . . 0

] = Dξ


1

. . .
1

x1 . . . xk



(
QHk+1AQk+1 −Dξ

)


1
. . .

1
x1 . . . xk

 = QHk+1AQk+1

[
H̃−1
k

0 . . . 0

]

QHk+1A
−1Qk+1

(
QHk+1AQk+1 −Dξ

)︸ ︷︷ ︸
=:B


1

. . .
1

x1 . . . xk

 =
[

H̃−1
k

0 . . . 0

]
.

Clearly B = BH , since the product commutes and is Hermitian. From the equations

B


1

. . .
1

x1 . . . xk

 =
[

H̃−1
m

0 . . . 0

]


1 x̄1
. . . ...

1 x̄k

B =


0

H̃−Hm
...
0


(A.1)

we can conclude that H̃−1
k = H̃−Hk and therefore H̃ = H̃H . The details for this

equality follow below and conclude the proof. Let

B :=


b1,1 b̄2,1 . . . b̄k,1 b̄k+1,1
b2,1 b2,2 . . . b̄k,2 b̄k+1,2
...

... . . . ...
...

bk,1 bk,2 . . . bk,k b̄k+1,k
bk+1,1 bk+1,2 . . . bk+1,k bk+1,k+1
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and write out (A.1)



b1,1 + x1b̄k+1,1 b̄2,1 + x2b̄k+1,1 . . . b̄k,1 + xk b̄k+1,1

b2,1 + x1b̄k+1,2 b2,2 + x2b̄k+1,2 . . . b̄k,2 + xk b̄k+1,2
...

... . . . ...
bk,1 + x1b̄k+1,k bk,2 + x2b̄k+1,k . . . bk,k + xk b̄k+1,k

bk+1,1 + x1bk+1,k+1 bk+1,2 + x2b̄k+1,k+1 . . . bk+1,k + xkbk+1,k+1



b1,1 + x̄1bk+1,1 . . . b̄k,1 + x̄1bk+1,k b̄k+1,1 + x̄1bk+1,k+1

b2,1 + x̄2bk+1,1 . . . b̄k,2 + x̄2bk+1,k b̄k,2 + x̄2bk+1,k+1
... . . . ...

...
bk,1 + x̄kbk+1,1 . . . bk,k + x̄kbk+1,k b̄k+1,k + x̄kbk+1,k+1



=



[
H̃−1
m

0 . . . 0

]


0

H̃−Hm
...
0


.

Note that bk+1,i = −xibk+1,k+1 and b̄k+1,i = −x̄ibk+1,k+1, which we substitute in the
second equation

H̃−Hm =


b1,1 + x̄1bk+1,1 b̄2,1 + x̄2bk+1,2 . . . b̄k,1 + x̄1bk+1,k
b2,1 + x̄2bk+1,1 b2,2 + x̄2bk+1,2 . . . b̄k,2 + x̄2bk+1,k

...
... . . . ...

bk,1 + x̄kbk+1,1 bk,2 + x̄kbk+1,2 . . . bk,k + x̄kbk+1,k



=


b1,1 − x̄1x1bk+1,k+1 b̄2,1 − x̄2x2bk+1,k+1 . . . b̄k,1 − x̄1xkbk+1,k+1
b2,1 − x̄2x1bk+1,k+1 b2,2 − x̄2x2bk+1,k+1 . . . b̄k,2 − x̄2xkbk+1,k+1

...
... . . . ...

bk,1 − x̄kx1bk+1,k+1 bk,2 − x̄kx2bk+1,k+1 . . . bk,k − x̄kxkbk+1,k+1



=


b1,1 + x1b̄k+1,1 b̄2,1 + x2b̄k+1,2 . . . b̄k,1 + xk b̄k+1,2
b2,1 + x1b̄k+1,2 b2,2 + x2b̄k+1,2 . . . b̄k,2 + xk b̄k+1,2

...
... . . . ...

bk,1 + x1b̄k+1,k bk,2 + x2b̄k+1,k . . . bk,k + xk b̄k+1,k

 = H̃−1
m .
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A.2 Bilinear form for Krylov subspaces

In literature on biorthogonal rational functions, instead of generating Krylov subspaces
with A, AH and using the Euclidean inner product 〈x, y〉E = yHx, sometimes A, A>
and 〈x, y〉> = y>x is used. Note that 〈., .〉> is a Hermitian bilinear form.
We provide two main results, which are sufficient to prove all other statements in
Chapter 3 and Chapter 4 for this alternative choice.

Biorthonormal bases for polynomial Krylov subspaces

The polynomial Krylov subspaces are, for A ∈ Cm×m and v, w ∈ Cm,

Kk(A, v) and Kk(A>, w).

Biorthonormal nested bases Vk,Wk ∈ Cm×k for these spaces satisfy

span{Vi} = span{v0, . . . , vi−1} = Ki(A, v)

span{Wi} = span{w0, . . . , wi−1} = Ki(A>, w), for i = 1, . . . , k,

and W>k Vk = I. These biorthonormal vectors satisfy a three term recurrence relation,
this result is stated in Lemma A.1. This lemma is a variant on Lemma 3.8.

Lemma A.1 (Biorthogonal Krylov bases recurrence relations - for 〈., .〉>). Let
A ∈ Cm×m, v, w ∈ Cm, with 〈v, w〉> 6= 0. Consider the Krylov subspaces
Kk(A, v),Kk(A>, w), with k < min{gv, gw}. Then biorthonormal nested bases
Vk,Wk ∈ Cm×k for these subspaces satisfy the recurrence relations

AVk = VkTk + tk+1,kvke
>
k

AHWk = WkT
>
k + tk,k+1wke

>
k ,

where Tk ∈ Ck×k is a tridiagonal matrix.

Proof. Since the biorthonormality of the bases Vk,Wk with respect to the inner product
〈., .〉> implies W>k Vk = I and vk ⊥ span{Wk}, wk ⊥ span{Vk}, we have

W>k AVk = W>k VkTk = Tk,

V >k A
HWk = V >k WkT

>
k = T>k .

The columns of Vk form a nested basis for Kk(A, v), so there exists a nonsingular
upper triangular matrix Rk such that Vk = BVk Rk, where BVk is the Krylov basis. By
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substituting this into the Krylov recurrence relation, one easily finds that Tk must
be a upper Hessenberg matrix. A similar argument is valid for Wk and thus T>k is
upper Hessenberg and therefore Tk is lower Hessenberg. Only a tridiagonal matrix is
simultaneously upper-and lower Hessenberg. Hence, Tk has tridiagonal structure.

If A = A>, that is, A is complex symmetric, and v = w then a basis Vk orthogonal
with respect to 〈., .〉> is obtained, V >k Vk = I and Tk> = Tk [71].

Biorthonormal bases for rational Krylov subspaces

Consider rational Krylov subspaces

Kk(A, v; Ξ) and Kk(A>, w; Θ).

The starting vectors must satisfy 〈v, w〉> 6= 0. Then biorthonormal nested bases
Vk,Wk ∈ Cm×k for these spaces exists, i.e., for i = 1, 2, . . . , k

span{Vi} = span{v0, v1, . . . , vi−1} = Ki(A, v; Ξ),

span{Wi} = span{w0, w1, . . . , wi−1} = Ki(A>, w; Θ),

W>k Vk = I

The pair of recurrence relations generating these bases is of the form

AVk+1Kk = Vk+1Hk,

A>Wk+1K̃k = Wk+1H̃k.

We will show that Hk,Kk, H̃k, K̃k can be chosen to be tridiagonal matrices. The
following lemma, Lemma A.2, is a variant of Lemma 4.4.
Lemma A.2 (Recurrence pencil structure for biorthogonal bases of rational Krylov
subspaces- for 〈., .〉>). Consider A ∈ Cm×m, v, w ∈ Cm, with 〈v, w〉> 6= 0 and
Ξ,Θ, with ξi, θi ∈ C\σ(A). Let QV , QW ∈ Cm×m be orthogonal nested bases
for K(A, v; Ξ) and K(A>, w; Θ), respectively, and corresponding pencils (HV ,KV ),
(HW ,KW ) satisfying

AQVHV = QVKV , AHQWHW = QWKW .

Then, under the assumption that no breakdown occurs, biorthonormal nested bases
V,W for K(A, v; Ξ) and K(A>, w; Θ), respectively, satisfy

AVK = V H,

A>WK̃ = WH̃,
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where the recurrence pencils can be chosen such that

• H has the lower triangular structure of HV and the upper triangular structure
equals the inverted upper triangular structure of KW ,

• K has the same lower triangular structure as KV and the upper triangular
structure equals the inverted lower triangular structure of HW ,

• H̃ has the lower triangular structure of HW and the upper triangular structure
equals the inverted upper triangular structure of KV ,

• K̃ has the same lower triangular structure as KW and the upper triangular
structure equals the inverted lower triangular structure of HV .

Proof. From the orthogonal bases QV and QW , the biorthonormal bases V and W
can be constructed via Lemma 2.2, i.e., V := QVR−1 and W := QWL−H , with
M = (QW )HQV = LR. Substituting the expressions for V,W in the recurrence
relations for QV , QW provides{

AQVKV = QVHV

A>QWKW = QWHW
⇔

{
AV RKV = V RHV

A>WLHKW = WL>HW

⇔

{
W>AV RKV = RHV

V >A>WL>KW = L>HW
.

Taking the transpose of the second equation and rewrite it:{
W>AV RKV = RHV

W>AV L−1(HW )−> = L−1(KW )−>
.

Since these expressions are only unique up to right multiplication with a nonsingular
matrix B, we get

RKVB = L−1(HW )−>, RHVB = L−1(KW )−>.
To obtain a particular choice for the structure of H and K it suffices to represent
B in its RL-decomposition B = RBLB (assuming it exists), where RB is an upper
triangular matrix and LB a lower triangular matrix,{

RKVB = L−1(HW )−>

RHVB = L−1(KW )−>
⇔

{
RKVRBLB = L−1(HW )−>

RHVRBLB = L−1(KW )−>

⇔

{
RKVRB = L−1(HW )−>L−1

B =: K
RHVRB = L−1(KW )−>L−1

B =: H
.

And the same reasoning as in Lemma 4.4 finishes the proof.
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Biorthogonal procedures

Section B.1 provides the derivation of the rational Lanczos iteration. That is,
expressions for the entries of the tridiagonal recurrence pencil are derived. In Section
B.2 a remark on the scaling of introduced weight vectors for inverse eigenvalue problems
is given.

B.1 Rational Lanczos iteration

The rational Lanczos iteration proposed in Section 8.1 is derived here. Consider two
rational Krylov subspaces, generated by A ∈ Cm×m and its complex conjugate AH ,

K(A, v; Ξ) and K(AH , w; Θ),

with starting vectors v, w ∈ Cm satisfying 〈v, w〉E 6= 0 and two sets of poles Ξ = {ξi}i,
with ξ ∈ C and Θ = {θi}i, with θi ∈ C.
Let ĝ denote the index of a breakdown, this can be a lucky breakdown or a serious
breakdown. The goal is to construct bases Vk,Wk ∈ Cm×k such that, for any k ≤ ĝ,
their columns span the rational Krylov subspaces

span{Vk} = span{v0, v1 . . . , vk−1} = Kk(A, v; Ξ)

span{Wk} = span{w0, w1 . . . , wk−1} = Kk(AH , w; Θ)

and are biorthogonal
WH
k Vk = D,

where D ∈ Cn×n is a diagonal matrix whose elements depend on the chosen
normalization.

247
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By Theorem 4.6 (and also Lemma 5.6), we know that two tridiagonal pencils
(T k, Sk), (T̃ k, S̃k) ∈ C(k+1)×k exist such that

AVk+1Sk = Vk+1T k and AHWn+1S̃n = Wn+1T̃n.

We assign variables to the elements of the recurrence pencils:

T k =:



d1 a2

b2 d2
. . .

. . . . . . ak
bk dk

bk+1

 Sk =:



c1 u2

l2 c2
. . .

. . . . . . uk
lk ck

lk+1



T̃ k =:



δ1 α2

β2 δ2
. . .

. . . . . . αk
βk δk

βk+1

 S̃k =:



γ1 µ2

λ2 γ2
. . .

. . . . . . µk
λk γk

λk+1


Additional structural properties are provided by Lemma 4.5 and Lemma 4.6, namely
the ratios of the sub-and superdiagonal elements are determined by the given poles

bi+1

li+1
= ξi,

βi+1

λi+1
= θi, i = 1, 2, . . . , k,

ai+1

ui+1
= θ̄i−1,

αi+1

µi+1
= ξ̄i−1, i = 1, 2, . . . , k − 1.

B.1.1 Initialize

For i = 1, the equations are different than the others, therefore these will be discussed
first. The recurrence relations follow from the first columns of the recurrence pencil{

c1Av1 + l2Av2 = d1v1 + b2v2

δ1A
Hw1 + β2A

Hw2 = γ1w1 + λ2w2

⇔


v2 = − (l2A− b2I)−1︸ ︷︷ ︸

=:B

(c1A− d1I)v1

w2 = − (λ2A− β2I)−1︸ ︷︷ ︸
=:F

(γ1A− δ1I)w1
.
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The matrices B and F can be computed, since A and the poles are given. Now, let us
obtain expressions for the coefficients c1, d1, γ1, δ1.
Consider the biorthogonality conditions

〈v2, w1〉E = 0, 〈w2, v1〉E = 0.

Using these conditions, expressions for the ratios d1
c1

and δ1
γ1

are obtained:{
〈v2, w1〉E = 〈−B(c1A− d1I)v2, w1〉E = 0
〈w2, v1〉E = 〈−F (γ1A

H − δ1I)w1, v1〉E = 0
⇔

{
d1
c1

= 〈BAv1,w1〉E
〈Bv1,w1〉E

δ1
γ1

= 〈FAHw1,v1〉E
〈Fw1,v1〉E

Only the ratios are specified, to make the coefficients unique, a normalization must be
chosen.

Example B.1. Biorthonormal bases, i.e., normalization such that 〈v2, w2〉E = 1. Let

v̂2 := v2/c1 = −B(A− d1

c1
I)v1, ŵ2 := w2/δ1 = −F (AH − δ1

γ1
I)w1.

Then the normalization leads to

〈v2, w2〉E = 1⇔ 〈v̂2, ŵ2〉E = 1
c1γ̄1

⇔ c1γ̄1 = 1
〈v̂2, ŵ2〉E

.

Still, there is freedom in the choice of c1 and γ1.

B.1.2 Iterate

Now the coefficients for 1 < i ≤ k < ĝ are derived. From the ith column of the
recurrence pencils we get the pair of equations{

uiAvi−1 + ciAvi + li+1Avi+1 = aivi−1 + divi + bi+1vi+1

µiA
Hwi−1 + γiA

Hwi + λi+1A
Hwi+1 = αiwi−1 + δiwi + βi+1wi+1

⇔

{
vi+1 = −B(uiA− aiI)vi−1 −B(ciA− diI)vi
wi+1 = −F (µiAH − αiI)wi−1 − F (γiAH − δiI)wi

,

with B = (li+1A− bi+1I)−1, F = (λi+1A
H−βi+1I)−1. Expressions for the coefficients

ui, ai, ci, di, αi, µi, δi, γi can be obtained by taking the structure, orthogonality
conditions and normalization into account.
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Poles

First, the poles must appear in the recurrence pencil
ai
ui

= θ̄i−2,
αi
µi

= ξ̄i−2.

Note the special cases

• If ξi−2 =∞, then µi = 0.

• If ξi−2 = 0, then αi = 0.

• If θi−2 =∞, then ui = 0.

• If θi−2 = 0, then ai = 0.

These will be important for normalization, the variable used for normalization depends
on the pole chosen. A distinction between finite and infinite poles must be made.

Orthogonality

Second, the orthogonality conditions dictate

〈vi+1, wi−1〉E = 0, 〈vi+1, wi〉E = 0, 〈wi+1, vi−1〉E = 0 and 〈wi+1, vi〉E = 0.

The first two lead to

〈vi+1, wi〉

= 〈−B(uiA− aiI)vi−1 −B(ciA− diI)vi, wi〉E

= −ui 〈BAvi−1, wi〉E︸ ︷︷ ︸
x

+ai 〈Bvi−1, wi〉E︸ ︷︷ ︸
y

−ci 〈BAvi, wi〉E︸ ︷︷ ︸
z

+di 〈Bvi, wi〉E︸ ︷︷ ︸
q

= uix+ aiy − ciz + diq = 0

and

〈vi+1, wi−1〉E

= 〈−B(uiA− aiI)vi−1 −B(ciA− diI)vi, wi−1〉E

= −ui 〈BAvi−1, wi−1〉E︸ ︷︷ ︸
x̃

+ai 〈Bvi−1, wi−1〉E︸ ︷︷ ︸
ỹ

−ci 〈BAvi, wi−1〉E︸ ︷︷ ︸
z̃

+di 〈Bvi, wi−1〉E︸ ︷︷ ︸
q̃

= uix̃+ aiỹ − ciz̃ + diq̃ = 0
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To summarize, for vi+1 we have three equations for four unknowns
ai
ui

= θ̄i−2

−uix+ aiy − ciz + diq = 0
−uix̃+ aiỹ − ciz̃ + diq̃ = 0

. (B.1)

Some choices of poles lead to a reduction in parameters:

• If ξi =∞, then B = I and y = q̃ = 0.

• If ξi = 0, then B = A−1 and x = z̃ = 0.

The fourth equation is obtained by normalization. In order to normalize, the other
sequence is required.
Using the latter two orthogonality conditions, a similar derivation is performed for
wi+1:

〈wi+1, vi〉E

= −µi 〈FAHwi−1, vi〉E︸ ︷︷ ︸
χ

+αi 〈Fwi−1, vi〉E︸ ︷︷ ︸
τ

−γi 〈FAHwi, vi〉E︸ ︷︷ ︸
η

+δi 〈Fwi, vi〉︸ ︷︷ ︸
ρ

= −µiχ+ αiτ − γiη + δiρ = 0

〈wi+1, vi−1〉E

= −µi 〈FAHwi−1, vi−1〉E︸ ︷︷ ︸
χ̃

+αi 〈Fwi−1, vi−1〉E︸ ︷︷ ︸
τ̃

−γi 〈FAHwi, vi−1〉E︸ ︷︷ ︸
η̃

+δi 〈Fwi, vi−1〉E︸ ︷︷ ︸
ρ̃

= −µiχ̃+ αiτ̃ − γiη̃ + δiρ̃ = 0.

To summarize, for wi+1 we have
αi
µi

= ξ̄i−2

−µiχ+ αiτ − γiη + δiρ = 0
−µiχ̃+ αiτ̃ − γiη̃ + δiρ̃ = 0

(B.2)

And for poles at zero or infinity:

• If θi =∞, then F = I and τ = ρ̃ = 0.

• If θi = 0, then F = A−H and χ = η̃ = 0.
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Normalization

Third, normalization will provide the fourth equation for (B.1) and (B.2), such that
the four unknowns are determined uniquely. We will define the nonnormalized vectors
v̂i+1 and ŵi+1, which can be computed at this point. We must make distinction
between θi−2 6=∞ and θi−2 =∞.

• If θi−2 =∞, then βi−2 = 0 and the expressions become
ui = 0
di
ai

= yz̃−ỹz
q̃z−qz̃

ci
ai

=
y+ di

ai
q

z

.

The nonnormalized vector is

v̂i+1 := 1
ai
vi+1 = Bvi−1 −B( ci

ai
A− di

ai
I)vi

and the normalizing variable is ai.

• If θi−2 6=∞, then the expressions become
ai
ui

= θ̄i−2
di
ui

= θ̄i−2(yz̃−ỹz)−(x̃z−xz̃)
q̃z−qz̃

ci
ui

=
θ̄i−2y−x+ di

ui
q

z

.

The nonnormalized vector is

v̂i+1 := 1
ui
vi+1 = −B(A− θ̄i−2I)vi−1 −B( ci

ui
A− di

ui
I)vi.

and the normalizing variable is ui.

Similarly for ŵi+1, a distinction is made.

• If ξi−2 =∞, then li−2 = 0 and the expressions become
µi = 0
δi
αi

= τη̃−τ̃η
ρ̃η−ρη̃

γi
αi

=
τ+ δi

αi
ρ

η

.
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The nonnormalized vector is

ŵi+1 := 1
αi
wi+1 = Fwi−1 − F ( γi

αi
AH − δi

αi
I)wi

and the normalizing variable is αi.

• If ξi−2 6=∞, then the expressions become
αi
µi

= ξ̄i−2
δi
µi

= ξ̄i−2(τη̃−τ̃η)−(χ̃η−χη̃)
ρ̃η−ρη̃

γi
µi

=
ξ̄i−2τ−χ+ δi

αi
ρ

η

.

The nonnormalized vector is

ŵi+1 := 1
µi
wi+1 = −F (AH − ξ̄i−2I)wi−1 − F ( γi

µi
AH − δi

µi
I)wi

and normalization is performed by µi.

The normalization constants can be determined by using the nonnormalized vectors
v̂i+1 and ŵi+1.

B.1.3 Termination

If a lucky breakdown occurs, i.e., k = min{gv, gw}, then an invariant subspace is found.
Assume without loss of generality that k = gv < gw. The restriction of A to this
subspace is then given by the pencil (Tk, Sk). The recurrence relation becomes

AVkSk = VkTk

AVk


c1 u2

l2 c2
. . .

. . . . . . uk
lk ck

 = Vk


d1 a2

b2 d2
. . .

. . . . . . ak
bk dk

 ,
i.e., there is no new basis vector introduced, since it is linearly dependent on the others
vi, i = 1, 2, . . . , k. The columns of the basis Vk span the invariant subspace.
We will derive expressions for uk, ck, ak, dk. Consider the equation

vk+1 = −B(ukA− akI)vk−1 −B(ckA− dkI)vk,
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which must be equal to zero.
The orthogonality conditions are

〈vk+1, wk〉E = 0, 〈vk+1, wk−1〉E = 0.

These lead to the expressions:

〈vk+1, wk〉E = ck〈Avk, wk〉E + uk〈Avk−1, wk〉E − dk〈vk, wk〉E = 0,

〈vk+1, wk−1〉E = ck〈Avk, wk−1〉E + uk〈Avk−1, wk−1〉E − ak〈vk−1, wk−1〉E = 0.

And, distinguishing finite and infinite poles:

• If θm−2 =∞, then {
dk
ak

= ck
ak

〈Avk,wk〉E
〈vk,wk〉E

ck
ak

= 〈vm−1,wm−1〉E
〈Avk,wm−1〉E

• If θk−2 6=∞, then{
dk
uk

= ck
uk

〈Avk,wk〉E
〈vk,wk〉E + θ̄m−2〈Avm−1,wk〉E

〈vk,wk〉E
ck
uk

= θ̄m−2〈vk−1,wk−1〉E−〈Ak−1,wk−1〉E
〈Avk,wk−1〉E

.

The parameters ak and uk can still be chosen, we set uk = 1 if θm−2 =∞ and ak = 1
if θm−2 6=∞.

B.2 Scaling in Biorthogonal IEP

In Section 9.4.1 it was mentioned that in numerical computation with biorthonormal
vectors the mutual scaling is important. It might be interesting to keep the difference
in their order of magnitude as small as possible. Using the notation of Section 9.4.1,
eliminators L1 ∈ L1 and R1 ∈ R1 are constructed such that they introduce the new
weights in the first columns of V̂ , Ŵ ∈ C(m+ 1)× (m+ 1). For scaling purposes, a
diagonal matrix D1 ∈ C(m+ 1)× (m+ 1) is introduced,

D1 =

d1
Im−1

dm+1

 .
This freedom originates from the fact that in normalization, the value of 〈ṽ, w̃〉E can
be distributed over η̃ and ν̃ in any way as long as 〈 ṽη̃ ,

w̃
ñu 〉E = 1. The equations are

now
V̂ L1D1R1e1 =

[
ṽ/η̃
]

and Ŵ (L1)−HD−H1 (R1)−He1 =
[
w̃/ν̃

]
.
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The parameters l1, r1 in L1, R1 are{
l1 = vm+1

η

r1 = −d2
d1

w̄m+1
ν̄+l1w̄m+1

. (B.3)

The resulting first columns are now scaled

V̂ L1D1R1e1 =

d1
v
η

d1l1

 =

 d1
v
η

d1
vm+1
η



Ŵ (L1)−H(D1)−H(R1)−He1 =


(

1
d̄1

+ r̄1 l̄1
d̄2

)
w
ν

− r̄1
d̄2

 =


η̄ν

d̄1(η̄ν+v̄m+1wm+1)
w
ν

η̄ν
d̄1(η̄ν+v̄m+1wm+1)

wm+1
ν

 .
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